iRPC front-end electronic status

First prototypes design & test beam results

L.Mirabito on behalf of RPC group

Muon Upgrade Workshop 11-13 September 2018

RPC upgrade at high η

72 chambers to equip area with $1.8 < |\eta| < 2.4$

- Add track hits in muon reconstruction
- Search for Heavy Stable Charge Particle

Readout Scheme

- Strip board :
 - 96 strips per chamber (1cm strip width at η = 2.8) between 2 gaps RPC
- Front-end :
 - Readout on both sides of the strip
 - Relative timing between both channels of same strip (σ ~ 150 ps)
 - Position along the strip ($\sigma \sim 1.5 \text{ cm}$)
- Absolute timing ($\sigma < 1$ ns)
 - HSCP search

First version prototype FEBv0

PETIROC2

9 2.2.9.9

	Parameter	Value		
	Number of Channels	32		
	Signal Polarity	positive or negative		
	Sensitivity	Voltage input amplifier, 200 Ohm matching		
	Timing Resolution	~ 18 ps RMS on trigger output (4 photoelectrons injected)		
	Dynamic Range	60 fC up to 400pC		
	Packaging & Dimension	TQFP 208 (28x28x1.4 mm) TFBGA 353 (12x12x1.2mm)		
	Power Consumption	6 mW/channel		
	Inputs	32 analogue inputs, No external component required Inputs DC level adjustable		
	Outputs	32-channel trigger outputs ASIC level general trigger (OR of all channel) ASIC level second level general trigger (OR of all channels) Charge measurement (10 bits) Time measurement (10 bits)		
of the second se	Internal Programmable	Common trigger threshold adjustment and 6bit-DAC/channel Shaping time & gain of the charge shaper 32 x 8bit-input DAC over 1V span		
		Ŵ		

Wave Union TDC

Principle :

Input signal is propagated into a chain of identical delays (bins)

All delays output are latched on the system clock

Fine delay to clock edge is measured by position of last crossed delay element.

Implementation of carry chain TDC in FPGA :

Width of bins are different (Vcc and temperature). Typ. 60ps for Altera Cyclone II

Some ultra-wide bins (LAB boundary crossing). Typ. 165ps for Altera Cyclone II

Wave union TDC solves this problem by splitting the input signal in 2 edges and ensuring that in any case, at least one edge is not in the ultra-wide bin.

Details in : QI Ji, DENG Zhi, Liu Yi-nong. Nuclear Electronics & Detection Technology, 2011, 31(4): 378-381.

2017: Test of small size PCB's

- 32 x 50cm strips (3,5mm pitch) and 32 off detector return lines (1mm wide)
- 2 iRPC chambers : 1.4/1.4 mm and 1.6/1.6 mm
- 2x Petiroc ASIC and 2x Wave union TDC mezzanine

2018: Real size PCB prototypes

- Each strip PCB covers half of a cassette with 48 strips (1 cm each)
- The strip, both gaps and cassette behave as a stripline where the cassette is the ground planes
 - Fine impedance adaptation needed
- Impedance of the strip is defined by :

$$Z_c = \sqrt{\frac{R_s + j. L_s. \omega}{G_p + j. C_p. \omega}}$$

Where : R_s : Resistance L_s : Inductance G_p : Conductance C_p : Capacitance

PCB impedance measurements

To minimize signal reflections, the stripline impedance must be controlled up to the asic. 3 methods were used to measure strip impedance :

• Direct measurement of line parameters with a RLC meter (at 2MHz)

Side	C _p (pF)	G _ρ (μS)	L _s (nH)	R _s (mΩ)	Ζ _c (Ω)
Wide	244	934	482	467	43,5
Narrow	244	934	487	461	44

• Direct measurement with potentiometric line adaptation

Reflection Method

Pulse shapes

2018 prototypes

- Challenge:
 - Build a thin (2 x 300 microns + Cu), large (50x160) PCB.
 - Very few producers identified
- Two designs tested
 - Optimal solution: Return lines embdedded in the PCB
 - Tuned Z adaptation, easy mechanical integration, shielding
 - loss of few (~ 5) cm at large radius, 4 layers PCB
 - Backup solution: Coaxial cable connection to FEBs
 - 3 layers PCB, easy for debugging stage
 - Not perfect Z adaptation, cabling & integration (mechanics, shielding) issues
- Two test beams in GIF++ (May & August) to validate their performances

Coaxial cable version

- Noise pickup, re-trigerring -> Shift of the turn on
- Acquisition window for pedestal 5 micros
- Threshold set much higher to limit tail effects on large time windows
 and keep acceptable rate
- Threshold used: 524(DAC)-480(DACu) = **44 DACu** = **107.8 fC**

Electronic tuning: Calibration & retrigerring control

- *Current setting:* Latched with deadtime = 10ns;
- ~3% loss of efficiency for 2 kHz/cm² mean background rate in the FEB @ HL-LHC (600 Hz/cm² expected with a safety margin of 3).

Return lines version

Flex will transmit the siganl from the two ends of strips to the FEBs

- Less Noise pickup
- Threshold used: 513(DAC)-480(DACu) = 33 DACu = 81 fC

GIF++ setup (August 2018)

hits 800

number

Time selection & efficiency

- Minimal $Q_{\text{seen}} = (I_{\text{top}} + I_{\text{bottom}})/\text{Rate/Surface} = Q_{\text{Slow}} + Q_{\text{Fast}} (\sim 1/12.)$
- $Q_{\text{seen}} \text{ MIP} = 1/2 Q_{\text{seen}} \text{ }^{\vee} (MIP \text{ interacts in the 2 gaps}) \sim 10 \text{ pC}$
- Coherent with threshold settings

Performances (Return Chamber)

Performances (Coaxial cables chamber)

Position reconstruction

- Cluster algorithms includes
 - Strip vicinity
 - $-\Delta t$ compatibility
 - Time Of Arrival compatibility
- σ (Δt) ~ 170 ps \Rightarrow 0.17/2 *160./8.4 ~ 1.6 cm
 - Rough alignement
 - No time walk correction (edge strip rejected when possible in position evaluation)

Summary

- Full size prototype tested with 2 versions of PCB's

 Coaxial cable or embedded return lines
- Good performances achieved up to 2 kHz/cm² on the whole chamber
 - -ε > 95 %
 - Working point shift bellow 300 V
 - Position resolution ~ 1.6 cm
 - PCB & ASIC performances are validated
- Two designs give comparible results but production and integration much easier with return lines design

Short term plans (Q4 2018)

- FEBv0 limitations
 - Cyclone II FPGA: Limited space (24 channels)
 - no possibility to read a complete ASIC
 - no Time Over Threshold measurement
 - Wiznet TCP/IP readout
 - 5 Mbit/s bandwidth
 - Custom clock and command system (ILC devs)
- FEBV1, validation of final FPGA (cabling, expected this week)
 - Cyclone V GT
 - 64 channels read with rising & falling edge (TOT), firmware ready
 - High speed serial link
 - GBT FPGA implementation feasible (to be done)
 - Keep Wiznet + Custom clock as backup-debug
 - GBT \Rightarrow TTC implementation + Back-end integration tests
 - 2 PETIROC2 chips read
 - Compatible with previous PCB's

FEBv1 conceptual layout

FEBV1 layout

150 mm

ART FILM - TOP

Further plans

• PETIROC2B

- Programable capacitors added to tune pre-amplifier bandwidth
 - slower rise time ⇒ Lower threshold, still acceptable time resolution, possibly improves re-trigerring issues (?)
 - pin-2-pin compatible with PETIROC2A
- ASIC submitted in July, waiting for foundry (<Q1 2019?)
- Final FEB (< Q2 2019)
 - 1 FEB per PCB (1/2 chamber)
 - 3 PETIROC2+ Cyclone V TDC blocks
 - 1 FPGA for communication (GBT link)
 - Final LV connectors
 - Integration with back-end prototype(s)
- Neutrons test (< Q2 2019)
 - Mainly firmware performances

Final FEB conceptual layout

