

RE4-1 & RE3-1 a proposal for the Phase II

Pigi Paolucci I.N.F.N. of Napoli & Hafeez Hoorani Islamabad

Muon Upgrade

RPC community is working on the **RE4-1 & RE3-1** phase II upgrade

- A preliminary version of the proposal has been included in present version of the muon TP.
- A preliminary cost book has been prepared for the April RRB meeting.
- An RPC R&D proposal document will be circulated in May 2014.
- An R&D activity on the next generation of Bakelite RPC is starting this year with the following main goals:
 - Test the present detector up to the 3000 fb-1 needed for HL-LHC
 - Improve the present design thanks to the lesson learned during LS1
 - Design a iRPC (thin gap, new front-end electronic, eco-gas, multi-gap....) to be able to run in the inner ring of the two outermost disks at a maximum rate of about 1 KHz/cm² and an Integrated charge of about 1 C/cm².

Basic upgrade info

The two main requirements, described before, can be fulfilled optimizing the **bulk** resistivity of the Bakelite electrodes and the average charge generated by the avalanche.

- The role of these parameters can be explained looking at the three following equations, obtained using simple electrostatic model:
 - The time constant of an elementary cell involved in the avalanche process:
 - $t = e_0 (e_r + 2) r$
 - The area of the "cell" concerned in the discharge: $S = 2 < q > /e_0 E = 2 < q > d/e_0 V_d$
 - The rate capability of the single cell: r = 1/St

Where <q> is the average charge per avalanche (C), r is the rate (Hz/cm²), r is bulk resistivity (Ω cm), s_e is the electrode thickness (cm), ε_{ρ} is the relative dielectric constant of the electrode, E is the electric field inside the gas, V_d is the voltage drop that stop the avalanche in the cell and d is the gas gap width.

- To increase the rate capability and reach the kHz/cm² foreseen in the high eta region we can <u>decrease the</u> resistivity of the Bakelite electrode and reduce the average charge <q> associated to the avalanche. A resistivity around $10^{10} \Omega$ cm can be produced taking into account that for the RE4 region we were already able to reach the 2-3 × $10^{10} \Omega$ cm.
- A thinner gas gap (from 2 mm to 1.5-1.0 mm) and a more performing front-end chip are two possible aspects to be investigated to reduce the average charge produce in an avalanche and at same time the power consumption of the detector.

- RE4 system consists of 144 chambers and cover a region of about 230 m².
 - Average chamber area is about 1.6 m^2 .
- Chamber cost was about 2.20 MCHF (half of the total)
- Total cost is 4.2 MCHF
- RE4-1 and RE3-1 cover a region of 115 m²
 - 72 chambers (20°) needed
 - Average chamber area is about 1.6 m^2 .
- We can apply a factor 2 to the cost of the chamber construction and to some services (HV, LV and Gas)

Estimated cost

- Chambers cost is about 1.43
 MCHF
- Electronics has been scaled with number of channels.
- Services and installation costs are the same of RE4.
- A contingency of about 10% has been included in the total cost.
- Most of the numbers have been easily extrapolated from RE4 project and are very close to the today cost.

Summary

1430
415
601
290
273,6
3010

Note:

20º chamber mode:	# component	# incl. Spare
# chambers	72	100
# strip per chamber	96	
# FEBs	288	300
# HV channels	36	40
# HV boards	7,2	8

Detailed costs

item	quantity	cost
Detector 20º size		1000
Bakelite	300	200
Chamber mechanics/strips	100	150
Gap	600	400
Chamber cooling circuit	100	100
Varie		100
R&D		50
FE Electronics		200
FE boards/ distribution	422	
board	400	160
Strip connect. To FE		40
Off detector		
electronics		215
Link Boards	100	100
Control Boards	25	35
LB integration	manpower	80
Link Box	10	10
Trigger		
Services		450
HV & LV systems	40 channels	200
HV&LV integration	manpower	30
Cooling System	÷	100
Gas system		100
Miscellanea		20

Cables	151
Signal	30
HV&LV DCS	20
LB Fiber	10
HV connector	50
LV connector	1
Connectorisation (Manpower)	40
Chamber assem&test	430
Infrastruture at site	100
Assembly consumable at sites	100
Ass&test manpower at 904	100
Shipment to CERN	80
Chamber test at 904	50
Logistic & Installation	290
Consumable installation	60
Mechanics installation	100
Manpower installation	80
Manpoower commissioning	50
Contingency	273,6
Total cost	3010

Conclusion

- Present RPCs have been certified up to 400 Hz/cm² and will be test up to 1 kHz/cm² at GIF++.
- A lower resistivity Bakelite foils and a more performing electronics will be studied.
- At same time a thin gap (eventually multi-gap) detector will be designed and tested at GIF++ in the next 2 years.
- A preliminary table cost have been produced (uncertainty of 10%) in details.
- TP and R&D document will be ready in few months.
- More simulation studies are going on.
- RPC institutions are thinking about the next upgrades and in June 2014 we will have the full list of interested people.