* K	< ^	>	>] • [☆	G	\mathcal{Q}	Public 🔹	G	Europe/Zuri	ch -	L Crotty -
Academic	: Training L	ecture	Regular I	Programme	ē									
Signals in Particle Detectors (1/5)														
by Werne	er Riegler ((CERN	I)											
Monda	ay 2 Dec 20	019, 11	1:00 → 1	2:00 Europe	e/Zurich									
♥ 500/1-	001 - Main	Audito	orium (CE	RN)										

DescriptionThis lecture series discusses the mechanisms of signal generation in particle detectors as well as the electronics processing of these signals.
The first lecture outlines how signals arise in particle detectors and discusses the Ramo-Shockley theorem and all related electrostatic theory.
The second lecture will then apply this theorem to a wide range of detectors used in particle physics experiments, including silicon detectors, gas
detectors, noble liquid detectors and silicon photomultipliers. The third lecture details extensions of the Ramo-Shockley theorem for detectors
that use media of finite conductivity and they are applied to resistive plate chambers, un-depleted silicon sensors and monolithic silicon sensors.
The fourth lecture discusses the theory of linear signal processing, optimum filtering and noise as well as signal propagation, termination and
crosstalk.

Ø	L1_signals_in_parti	L1_signals_in_parti	Screen Recording	& Video preview			
From the same series	2 3 4 5						
Organised by	nised by Albert de Roeck /300++ participants						

Help | Contact | Terms and conditions | URL Shortener | Privacy