







# Aging suppression timing Multi-Strip Multi-Gap Resistive Plate Chamber for high counting rate experiments

Mariana Petris

**Hadron Physics Department** 

National Institute for R&D in Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania





# Outline

- Motivation next generation high interaction rate, high multiplicity experiments, (e.g. CBM/FAIR, Darmstadt ->TOF inner wall)
- **MSMGRPC** design considerations & high counting rate test of the MSMGRPC
- ► Aging investigations with high activity <sup>60</sup>Co source
- **MSMGRPC** prototype with direct gas flow & X-ray tube aging studies
  - Standard fishing line spacers
  - Discrete spacers a new generation of direct flow MSMGRPC
- Summary and Outlook

2



- <u>CBM experiment at FAIR/SIS100:</u>
  A+A collisions, E<sub>kin</sub> = 2.5A 11A GeV
  Systematically explore QCD matter at large baryon densities with
- high accuracy and rare probes

MVD: Micro Vertex Detector\* STS: Silicon Tracking System\* \* inside magnetic field MuCh / RICH Muon Chamber System / Ring Imaging Cherenkov Detector TRD: Transition Radiation Detector ToF: Time-of-Flight Detector

- •Tracking acceptance:  $2.5^{\circ} < \theta_{Lab} < 25^{\circ}$
- •Peak R<sub>int</sub> is 10 MHz for Au+Au
- •Fast & radiation hard detectors
- •Free-streaming DAQ
- •4D tracking (space, time)
- •Online event selection & reconstruction
- •Data rate: 1 TB/sec

### **CBM – TOF wall**

See also Ingo's talk on Tuesday







Detectors with different rate capabilities and granularities are needed as a function of polar angle

<u>Our R&D activity  $\rightarrow$  MSMGRPCs for the inner wall :</u>

- highest counting rate
- highest granularity
- ~15 m<sup>2</sup> active area (up to ~ 11° polar angle)

#### CBM – TOF Technical Desing Report, October 2014



- **>** Rate capability  $\leq$  50 kHz/cm<sup>2</sup>
- Polar angular range 2.5° 25°
- Active area of 120 m<sup>2</sup>
- Occupancy < 5%</p>
- Low power electronics (~120.000 channels)
- Free streaming data acquisition

### **CBM – TOF inner wall**



3 chamber types: 56/96/196 mm (strip length) x 300 mm

|              | MRPC1c<br>(196 mm) | MRPC1b<br>(96 mm) | MRPC1a<br>(56 mm) | Total |
|--------------|--------------------|-------------------|-------------------|-------|
| No. MRPCs    | 168                | 108               | 40                | 316   |
| No. channels | 10752              | 6912              | 2560              | 20224 |

#### **<u>CBM-TOF inner zone</u>**

- ~15 m<sup>2</sup> active area, modular architecture:
  - 12 modules
  - 4 types (M0, M1, M2, M3)

Counters with different granularities are used.





### **Chamber design considerations**





3<sup>rd</sup> International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors, CERN 6 – 10 November 2023

6

### **MSMGRPC** prototype: gas exchange via diffusion

High voltage (HV) electrode



### Aging investigations of MSMGRPC with gas exchange via diffusion

**MSMGRPC** under high  $\gamma$  flux

- IRASM/IFIN-HH multipurpose irradiation center

D. Bartos et al., Nucl. Inst. and Methods A 1024 (2022) 166122

**MSMGRPC** short term recovery

- <sup>60</sup>Co source: 360 kCi;
- Dose rate = 0.3 kGy/h



# **Aging investigations**

Dark rate generated around the spacers



Glass inspections performed with various methods: (SEM, XPS, AFM RBS, non-RBS, THz-TDS)



D. Bartos et al., Nucl. Inst. and Methods A 1024 (2022) 166122

# (XPS) analysis of the chemical composition of irradiated and non-irradiated glass plates



### First MSMGRPC prototype with a direct flow – 70% gas transmission

#### Assembling of MRPC1a (56 mm strip length)



- Direct gas flow through the gas gaps.
- Spacers run across the strips.
- Spacers outside electric field area.



High intensity X-ray irradiation



Gas mixture: 97.5%  $C_2H_2F_4 + 2.5\%$  SF<sub>6</sub> Gas flow rate: 4 l/h HV = +/- 6 kV

Deposition on the middle of the glass electrode



10

M. Petris et al., Nucl. Inst. and Methods A 1045 (2023) 167621

### Second MRPC1a prototype with direct flow – 100% gas transmission



3<sup>rd</sup> International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors, CERN 6 – 10 November 2023

11

### High intensity X-ray irradiation of MRPC1a



## Mapping the direct flow counter with cosmic rays, in self – triggered mode, after X-ray exposure





### **Direct gas flow counters MRPC1b**

### Gas guide design



Assembling of MRPC1b (96 mm strip length)



### **3D printed gas guide**



#### Assembling of MRPC1c (196 mm strip length



## Aging tests, high X-ray flux MRPC1b & MRPC1c

### **Chamber tightness**



#### **Experimental setup**



### MRPC1b



Gas mixture: 97.5%  $C_2H_2F_4 + 2.5\%$   $SF_6$ 

#### Dark current & dark counting rate after high X-ray flux exposure



3<sup>rd</sup> International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors, CERN 6 – 10 November 2023 15

### **Dark rate long – term evolution**

| Counter            | exposure                                      | 3.5<br>7 3         | rpc56<br>dose | 5 irradiat<br>rpc96 > | ed 1 year<br>dose rpc | · ago<br>196 |        |
|--------------------|-----------------------------------------------|--------------------|---------------|-----------------------|-----------------------|--------------|--------|
| MRPC1a<br>(56 mm)  | End on 28.09.2022<br>(35 mC/cm <sup>2</sup> ) | 2.5 Hz/c           |               |                       |                       | MRPC1        | a      |
| MRPC1b<br>(96 mm)  | 21.03 – 13.04.2023<br>9.4 mC/cm <sup>2</sup>  | 2.1 K <sup>3</sup> |               |                       |                       | MRPC1        | C      |
| MRPC1c<br>(196 mm) | 19.04 – 28.04 2023<br>2.4 mC/cm <sup>2</sup>  |                    | 10 20 3       | 0 40 5                | 0 60 7                | 0 80 9       | )0 100 |

### **Cosmic - ray tests of the direct flow prototypes**

Direct flow MSMGRPC stack

Experimental setup for cosmic rays test







17

## **Cosmic - ray tests of the direct flow prototypes**

**Efficiency & time resolution after exposure to high X-ray flux** 



### 2D mapping of MRPC1b active area in self triggered mode



Position along the strip (mm)

## 2D mapping of MRPC1c active area in self triggered mode



### **New generation direct flow MSMGRPC**

![](_page_20_Figure_1.jpeg)

### New generation direct flow MSMGRPC – discrete spacers 2D mapping in self triggered mode

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

## New generation direct flow MSMGRPC based on commercial polyimide disc spacers

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

Gas mixture: 97.5%  $C_2H_2F_4 + 2.5\%$   $SF_6$ 

![](_page_22_Figure_4.jpeg)

### **Exposure to high X-ray flux & recovery**

![](_page_22_Figure_6.jpeg)

3<sup>rd</sup> International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors, CERN 6 – 10 November 2023

## New generation direct flow MSMGRPC based on commercial polyimide disc spacers

![](_page_23_Picture_1.jpeg)

Chamber operation:

All days:  $2 \times 5.6 \text{ kV} \rightarrow 132 \text{ kV/cm}$ Counting rate =  $28 - 30 \text{ kHz/cm}^2$ 

Day 8 :  $2 \times 6.0 \text{ kV} \rightarrow 141 \text{ kV/cm}$ Counting rate =  $45 - 47 \text{ kHz/cm}^2$ 

![](_page_23_Figure_5.jpeg)

## Implementation of the new generation direct flow MSMGRPC in the M0 module of the CBM-TOF inner zone

![](_page_24_Figure_1.jpeg)

Six/ten gas pipes distributors printed 3D

![](_page_24_Picture_3.jpeg)

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_5.jpeg)

![](_page_24_Picture_6.jpeg)

25

# Summary & Outlook

- The aging tests of MSMGRPCs for the CBM-TOF inner zone performed using a high intensity <sup>60</sup>Co source evidenced an important gas pollution effect which could limit the lifetime of the counter.

- Proposed mitigation solutions has been MSMGRPCs with direct flow through the gaps and reduced number of the fishing line spacers in the active area. Gas flow rate studies showed a minimization of the aging effects (dark current and dark counting rate) with the increase of the gas flow, its suppression being observed at 6 l/h.

- Due to the still high dark counting rate localized in the close vicinity of the spacer, a new architecture of the counters is proposed. The fishing line spacers were replaced with discrete spacers which minimize the active area in contact with spacers.

- The X-ray aging investigations showed very promising results: dark current and dark counting rate are independent of gas flow and goes to negligible values in hours, even at gas flow rate of 0.5 l/h.

- X-ray irradiated counters maintain their performance in terms of time resolution and efficiency after exposure.

- Dedicated high counting rate tests in mCBM and MIP aging tests are required and they will follow.

### **Acknowledgements**

**IFIN-HH Bucharest Hadron Physics Department** V. Aprodu **D.** Bartos A. Caragheorgheopol **D.** Dorobantu V. Duta M. Petris **M.** Petrovici A. Radu G. Stoian

GSI Darmstadt Jochen Frühauf

Universität Heidelberg Ingo Deppner Norbert Herrmann

![](_page_27_Figure_0.jpeg)

# **Back up slides**

### **FLUKA** simulations

Au beam with kinetic energy of 2A GeV, 10<sup>7</sup> interactions/s, over 2 months

![](_page_29_Figure_2.jpeg)

#### A. Senger, Design simulations of beam pipe and radiation studies for the CBM experiment, CBM-TN-18001, 2018.

1D-position along 16 measured strips – self triggered mode MRPC1c fishing line spacers

![](_page_30_Figure_1.jpeg)

3<sup>rd</sup> International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors, CERN 6 – 10 November 2023