The RPC System for the CMS Experiment

Forward Detector

Peking University, Beijing **China** KODEL, Seoul, **S. Korea** PAEC and NCP, Islamabad, **Pakistan** CERN, Geneva, **Switzerland**

Trigger Electronics

Warsaw University, **Poland** Warsaw Univ. of Tech., **Poland** Soltan Institute for Nuclear Studies, Warsaw, **Poland** University of Technology, Lappeenranta. **Finland** Sez. INFN, **Bari**, Italy

Barrel Detector

INRNE, BAS, Sofia, Bulgaria & University of Sofia, **Bulgaria** Laboratori Nazionali di Frascati dell'INFN, **Frascati** Dipart. Interateneo di Fisica and Sez. INFN, **Bari**, Italy Dipart. di Fisica and Sez. INFN, **Napoli**, Italy Dipart. di Fisica Nucleare e Teorica and Sez.INFN, **Pavia**, Italy

IEEE 2006 - San Diego, 1 November 2006

The CMS design

The μ system is located outside of the coil.

It consists of 4 μ stations interleaved with the iron return yoke plates: MB1-4 in the barrel and RE1-4 in the forward.

The stations are grouped into **5 wheels** around the beam line in the barrel and in **4 disks/end** (the 4th is descoped), perpendicular to the beam line, in the forward.

The CMS muon trigger

 μ trigger consists of 2 complementary and independent systems **DT or CSC & RPC** for:

- identification of muons
- measurement of their transverse momentum
- bunch crossing assignment

The most difficult task for any experiment at LHC: the **event selection!**

The CMS muon trigger....con't

Muons are expected to provide clean signature

The **momentum measurement** relays on the bending of charged tracks in the magnetic field produced by the coil.

The solenoid field of CMS bends tracks in the (r,ϕ) plane perpendicular to the beam axis.

A reduction of the trigger muon rate can be done requesting that the transverse momentum of the muons exceeds a certain threshold.

The RPC system

The \mathbf{p}_t assignment is accomplished by the trigger processor, the PAC, that compare the observed patterns of hits with predefined ones, each corresponding to a \mathbf{p}_t value.

High RPC's time resolution (about 1 ns) and a perfect **synchronization** is required to assign the muon to the proper bunch crossing.

IEEE 2006 - San Diego, 1 November 2006

The CMS RPC design

Barrel Station

Double gaps 2 mm width

- **Bakelite** bulk resistivity $\rho = 2-5 \ge 10^{10} \Omega \text{cm}$
- > Gas mixture: 96.2% $C_2H_2F_4+3.5\%$ iso $C_4H_{10}+0.3$ SF₆
- > Operated in **avalanche mode**

Forward Station

• 912 stations

- total surface 3500 m²
- 4632 sheets of bakelite 15
 - 150.000 electronic channels

IEEE 2006 - San Diego, 1 November 2006

Status of Barrel production

Production & test: 100% completed
→ 480 chambers assembled
→ 480 chambers tested with cosmic rays
→ All accepted chambers satisfy the CMS requirement:

<noise> < 1 Hz/ cm² <cluster size> = 2.1 strips <efficiency> = 97.3 %

Status of Barrel installation

Commissioning & Installation: 58% completed

The stability of the current is monitored for about 20 days.

Functionality tests are done before and after the installation in the coil.

430 chambers **certified** \rightarrow 90 % completed

IEEE 2006 - San Diego, 1 November 2006

Status of RPC Forward

Production & Test: 67 % completed

► 288 chambers **assembled** and **tested** with cosmic muons

RE1/2 - Efficiency at 9.3 kV

Installation: 46% completed
➢ Y+1 RE1 and RE2 and RE3.
➢ Y-1 RE1

IEEE 2006 - San Diego, 1 November 2006

MTCC: Magnet Test and Cosmic Challenge

August - October 2006

- Check functionality of the magnet: cooling, power supply and control systems
- Field mapping
- ➢ Test µ alignment system
- Installation validation
- Read out detector & synchronization
- Commission detector
- Commission cosmic trigger

RPC system

- > **Barrel:** Two sectors of W + 2 & one sector of W+1
- **Endcap**: 1 station of **Y**+1

The read out chain

The CMS Trigger logic is optimized for muon tracks coming from the vertex. Not adequate for cosmic muons !!

> This requirement is crucial for the commissioning and debugging of the whole apparatus.

RPC Technical Trigger

Development and test of an alternative RPC technical trigger (RBC) for cosmic muons. The **RBC** electronics provide sector trigger with selectable majority level from 1/6 to 6/6.

The reliability of this electronics studied during MTTC.

Goals are:

- study of the RPC performance
- give the trigger to the other sub detectors

5/6 - trigger rate ~30 Hz per wheel 6/6 - trigger rate ~13 Hz per wheel

Synchronization

In time fractio	Barrel						
0.94	0.91	0.75	0.90	0.91	0.88	0.00	0.9
0.94	0.97	0.93	0.94	0.94	0.97	0.93	-0.8
0.92	0.87	0.96	0.95	0.94	0.92	0.96	-0.6
0.92	0.95	0.92	0.95	0.90	0.95	0.94	-0.4
0.95	0.92	0.93	0.94	0.95	0.96	0.95	0.2 0.1
0.95	0.92	0.93	0.94	0.95	0.96	0.95	0.1

IEEE 2006 - San Diego, 1 November 2006

RPC & DT occupancy

IEEE 2006 - San Diego, 1 November 2006

Running conditions

Environmental and detector parameter have been continuously monitored

IEEE 2006 - San Diego, 1 November 2006

Event display

Muon offline reconstruction: RPC strips fired in **red** and DT in **green Many successfully reconstructed** μ **observed!!!**

IEEE 2006 - San Diego, 1 November 2006

Data Quality Monitor

IEEE 2006 - San Diego, 1 November 2006

DT Local segment reconstruction

The μ impact point on the RPC have been evaluated by reconstruction of the DT segment

Chamber global efficiency

Alternative method: μ events can be reconstructed using only the RPC stations with a linear fit of fired strips position.

Spatial resolution ~ 1.2 cm evaluated using the residual distribution (distance between muon impact point and the nearest cluster center).

IEEE 2006 - San Diego, 1 November 2006

- ✓ Installation of the CMS RPC system is well advanced.
- ✓ Chambers performance certificated through cosmic rays telescopes.
- \checkmark Three barrel sectors and one forward slide successfully operated during the MTCC at CERN.
- \checkmark RPC based Technical Trigger for cosmic muon developed and tested successfully.
- ✓ Chamber performance according to expectation and to CMS requirement
- ✓ Cosmic muons reconstructed to study local and global chamber efficiency.

However only 4 % of the detector operated during the MTTC ...still a long way to catch the goal !!!