

Status Summary: Estimation of Radiation Levels for the Pixel Insertion in (E)YETS 2016/17 and Residual Radiation Measurements: YETS 2015/16

S.Mallows on behalf of BRIL Rad Sim Includes Results and contributions by H.Vincke & I.Bergstrom (HSE/Radiation Protection Group)

Overview

- Review of status at December meeting of simulations of radiation levels for Pixel Insertion EYETS 2016/17
 - https://indico.cern.ch/event/468103/
- Summary follow-up work/simulations performed since December
- Recent Measurements of residual radiation (YETS 2015/16)
 - Gamma Ray Spectroscopy
 - N. Beni, Z. Szilasi, S.Mallows,
 - Ambient Dose Equivalent Rates: H*(10)

Dependencies: Residual Radiation Estimates

FLUKA Code itself

- In general very well benchmarked for activation with hadronic cascade
 - Some issues with isomer production

CMS Model for Prompt Field

- Correct modelling of total mass in regions
- Correct hydrogen (moderating) content for thermalising neutrons
- And, of course All settings incl. the collision source (DPMJET-III)

CMS Model for Decay Radiation

Material compositions (e.g. 1% impurity can be responsible for 99% of activity)

• **Normalization** & Luminosity Assumptions

- Total luminosity *and* time distribution of luminosity. **In general**:
- Long-lived nuclei longer cooling times: depend on total luminosity
- Short-lived nuclei shorter cooling times: depends on instantaneous luminosity

Rad Level Estimates for Pixel Insertion EYETS 2016/17 Review of December Meeting

- Simulations with updated Tracker in CMS FLUKA model + SESAME Tool (for open configuration)
- Predicted Ambient Dose Eq. Rates, H*(10), higher than expected (considering measurements by S.Bally in LS1)

https://indico.cern.ch/event/468103/ for zooms and 1d plots

Heavy Ion Run is considered as cooling time. EYETS day 1 is 40 days since PP collisions in FLUKA simulations

- LS1 simulation (identical model, but LS1 settings) & measurement comparison found here: <u>https://indico.cern.ch/event/468103/</u>, I Bergtrom.
 - Good agreement near beampipe, not so good at larger radii

17/03/2016

Main Contribution from Tracker and BH at ~ 30<R<120cm

Plots by L.Gloggler

Conclusions & Follow-Up Review from December Meeting

- FLUKA estimates beampipe activation okay
- Beampipe shielding (extended) required at ~3.3 m
- HF beam pipe contribution should be addressed (extend shielding/limit stay)
- Bulkhead shield study performed by L.Gloeggler (not feasible for use in EYETS 2016→ redo study for LS2)
- Key Follow Up Points:
- Investigate further Bulkhead contribution to dose rate
 - Material check and make further simulations for residual nuclei / Gamma Spectra - identify main contributing nuclides
- Investigate cable hotspot region
 - Extensive material check already in process I Kurochkin
- Profit from Benchmark Measurements in YETS 2015/16
 - Gamma ray spec and H*(10) detailed map near bulkhead
- Contribution from heavy ion run, in case of Pb-p collisions?
 - Simulations recently performed. Please contact Heinz Vincke/Ida Bergstrom for HSE/RP group results 17/03/2016

Tracker Model in FLUKA - Material Check

- The current CMS FLUKA TK model is based on material budget for Phase I as in CMSSW
 - Bulkhead Regions material taken directly from GEANT 4 model.
- I.Kurochkin, N.Bacchetta, check: CMSSW material budget implemented to FLUKA – no faults
- **However** GEANT 4 /TK model itself may not contain correct material description.
- Excess cobalt (2.8%) in "Inconel" used in GEANT4 models. There should be no cobalt (apart from *very* small trace amounts with nickel)
- ~200g of cobalt in the thermal screen region should be removed (&10g Cobalt in nose)
- & Add trace amounts where there is Nickel..?
- **Conclusion:** We can make minor improvements (as with any region) but this is unlikely cause of simulation/measurement difference

Tracker Model by Igor Kurochkin:

https://espace.cern.ch/cms-project-bril/SitePages/v.3.9.0.0.aspx https://indico.cern.ch/event/386582/

17/03/2016

Identification of contributing isotopes Residual Nuclei (example hotspot region)

Identification of contributing isotopes Gamma Spectrum (near example hotspot region)

- Boundary crossing from air to air at Z=297.3cm and 102 cm < R < 123.3 cm
- Day 1 EYETS 2016/2017: Gamma energies consistent with Ag -110m decay

Identification of contributing isotopes Actiwiz – RP tool (Ida Bergstrom RP)

- Advantage: provides info about **source**, i.e. identifies responsible element in material
- Input: prompt spectra, from database + exact material composition for region + irradiation period approximation
- Actiwiz Results example:
 - From Cable Axial region: Silver Isomer Ag-110m is top contributor (~95%)* or significant contributor*– Production 100% from silver.
 - From Pixel Cable Region: contributors* ⁵⁸Co, ⁵⁶ Co, ⁵⁴ Mn. Production of each nuclide from various elements (**e.g**. ⁵⁴Mn production from iron, copper & manganese etc.)
- The results & explanations from Ida/RP helped with understanding on *production* of various nuclides in hotspot region.
- Key Message Ag-110m seems to be main contributor from certain hotspot regions
 *depends on which particular ActiWiz spectra.

- ignoring self-absorption, geo effects

At the moment database is for accelerators only. ActiWiz 3 will be adapted for CMS experiments

Proton

10

Silver 110m Isomer and FLUKA

- FLUKA (and ActiWiz 2) uses 1:1* branching ratio for production of isomeric states
- However in FLUKA development version (and ActiWiz3), amongst other changes
 - New, more exact isomer production model for isomers created by <u>low energy</u> <u>neutrons</u> (<20MeV) based on JEFF activation
- Silver half life info:
 - 110-Ag : 24.6 s
 - 110m-Ag : 249.9 days
- → Over production of silver isomer in simulations could lead to overestimates activity in cable regions at relevant cooling times
- Quick simulation (not SESAME set up) with Development versus Current FLUKA (v.2 011.2c.3) by I.Bergstrom:
 - Activation in outer tracker and cable regions reduced with devel. version:
 - Near bulkhead, day 1 EYETS: reduction in H*(10)by a factor of 2-3 at R~1m, no significant reduction close to beampipe.

→ Full SESAME simulations will be performed with development FLUKA as soon as possible

(*) 1:1 for 1 isomeric state, 1:1:1 for 2 isomeric states, etc. etc. 17/03/2016

YETS 15/16 Gamma Ray Spec Measurements

- Falcon 5000 Germanium Detector
 - Requires cooling (5hrs minimum)
 - Good resolution: 1-2 keV up to 1 MeV
 - Portable, but heavy (~20 kg):
 - measurement/locations require planning
 - With additional collimator:
 - angular acceptance ~ 45 degrees (based on quick tests with source January).
 - Further more extensive characterization is planned in coming weeks

Measurement Locations in Cavern

- 18 separate measurements at different locations, and with various shielding scenarios [S.Mallows, N.Beni, Z.Szilasi]
- Locations include:
 - Tracker bulkhead
 - Beampipe bellows at ~3.3m
 - Cable regions on ES
- 2 example spectra shown here

18 reference slides (as below) and corresponding spectra [plots and raw data] have been prepared and will be added to sharepoint:

Beampipe, Z = 3.33m

- Date: 01/02/2016
- Original Filename (FALCON):
 - UXC/20160201/BeamPipe_2
- Text data File on SharePoint: /cern.ch/bril/SitePages/RadMeasurements.aspx
- Live Time:600s
- Dead Time:
- CMS Scenario:
 - ECAL Endcap Front face ES at 8.8m
 - No additional shielding
 - Nose in place
- Location Front face Falcon collimator in CMS FLUKA Coord System:
 - **X: -27.0**
 - Y: 0.0
 - Z: 333.0
- Orientation: Towards Near (+)

Z= 293cm Bulkhead

YETS 15/16 Simulations

- Simulations with FLUKA/SESAME and the spectra analysis very much work in progress
 - The existing 'prompt step data' with fluka2011.2c (NB version with Isomer issues) has same settings as EYETS 16/7 pixel insertion simulations
 - → Use this to make some quick 'decay step' simulations performed for YETS 15/16
 - Need further characterization of Falcon to make better representation in decay step
 - 'Benchmark' irradiation profile formed for 2015
 - 2 examples given alongside meas. data in following slides
- Further simulations planned:
 - Gamma Spectrum at all locations
 - Better representation of Falcon
 - Exact cooling times
 - With and without FLUKA development version

Simulations – Irradiation Profiles

- Standard Irradiation Profile and Lumi assumptions finalised by HSE /RP Group
- Implemented in FLUKA as continuous P-P collisions in the end of each period, assuming
- 75% expected peak lumi at
- 80 mb inelastic cross section 2015
- 75 mb inelastic cross section in 2010-2012

Year	Integrated Iumi [fb ⁻¹]	Instant. Lumi [cm ⁻² s ⁻¹]
2010-2012	30	0.8 E 34
2015	4	0.63 E 34
2016	34	1.4 E 34

Lumi Assumptions for a 'standard' FLUKA irradiation profile for EYETS 2016/17 Remove 2016 for YETS 2015 simulations

- Benchmark Profile for 2015 (tag 'BM2')
 - S.Mallows
- Extract Lumi data "Normtag1 "
- Relevant Cooling times ~12 weeks
- Integrated delivered LHC lumi per week convert to FLUKA as continuous P-P collision rate for each week
- Total lumi 4.22 fb⁻¹
- Assuming 80 mb inelastic cross section 2015

!!! Work in Progress

Spectra BeamPipe, Z= 3.21m

- 'Benchmark' irradiation profile 2015
- 12 weeks cooling
- Angular acceptance not modelled
- But only activation from beampipe components considered – bulkhead etc. switched off as 'source' of radiation
- Photons crossing boundary which is 360 deg around bellow

Spectra Bulkhead

!!! Work in Progress

- 'Benchmark' irradiation profile 2015
- 12 weeks cooling
- Angular acceptance not modelled
- & Activation from all elements simulated
- Photons crossing boundary at bulkhead

17

Measurements: Ambient Dose Eq Rates

- Taken at: 40 + locations with AD6 device within vac tank
 - Example measurement/simulations near (1cm from bulkhead): FLUKA (2011.2c.0) over predicts

Location	Distance (F	R) MEAS	FLUKA (v2011.2c.3)
Α	73cm	1.3 uSv/hr	8 μSv/hr
В	123cm	0.79 μSv/hr	6.4 μSv/hr
С	153cm	0.53 µSv/hr	

Measurements at 1cm from bulkhead surface

FLUKA Results Ambient Dose Eq Rates

Close to Bulkhead

Summary

- Comparison measurements data (LS1 and YETS 15/16) suggests over prediction of residual amb dose eq. rates in certain regions
- BRIL CMS inputs / tools are okay
 - We can always continue with minor improvements.
- Simulation settings used/suggested by RP group okay
- Cause of over prediction seems to be a particular isomer production problem with FLUKA code (current 2011 vers
- YETS 2015 measurement campaign invaluable for verifying future CMS FLUKA simulations can be trusted
 - Comparisons to be made with development FLUKA asap.
- Simulations for residual radiation in EYETS 2016/17 pixel insertion with final beampipe shielding designs and FLUKA development version will be performed by HSE/RP group

Back-Up Slides

Ag-110 Ag-110m

http://www.nucleide.org/DDEP_WG/ Nuclides/Ag-110m_tables.pdf

Forming FLUKA PP collision profile

Week (week 1 starts June 3rd)

CMS Integrated Luminosity, pp, 2015, $\sqrt{s} = 13$ TeV Data included from 2015-06-03 08:41 to 2015-11-03 06:25 UTC

CMS Integrated Luminosity Per Week, pp, 2015, $\sqrt{s}=$ 13 TeV

Cobalt 57 & 58

Gammas from ⁵⁸Co (70.86 d 7)

Eg (keV)	lg (%)	Decay mode			
			Eγ (keV)	lγ (%)	Decay mode
14.41300 <i>15</i>	9.16 <i>15</i>	е			
122.0614 4	85.60 17	е			
136.4743 5	10.68 <i>8</i>	е			
230.29 <i>2</i>	0.0004 4	е		00	o + 0+
339.54 <i>18</i>	0.0139 <i>3</i>	е	810.775 9	99	e+p
352.36 <i>1</i>	0.0132 <i>3</i>	е	863 959 <i>9</i>	0 683 11	ε+ β⁺
366.75 <i>1</i>	0.0013 <i>3</i>	е	005.5555	0.005 11	C · P
569.92 <i>4</i>	0.017 <i>1</i>	е			
692.03 <i>2</i>	0.157 <i>9</i>	е	1674.730 <i>1</i> (0 0.518 <i>8</i>	ε+β+
706.40 <i>20</i>	0.0253 <i>5</i>	е			

SESAME

- Developed by Tim Cooijmans (Technical student 2014/2015) and Moritz Guthoff
- A BRIL-developed tool for FLUKA activation simulations with CMS open scenarios
- Such scenarios can be approximated by simulating prompt radiation in the closed geometry and decay radiation in the open geometry
- Sesame provides the tools and workflow to separate the prompt and decay simulations and transform the model in between
- Download and manual:

https://espace.cern.ch/cms-project-bril/SitePages/Sesame.aspx

simulation of prompt radiation

simulation of decay radiation

	Region Rep FLUKA region r FLUKA Materia Information fro Internal Note 2 Volu Dens Relat	oresents: Axial (name: Tktstcba al name: CAB-AXIA om GEANT 4 model 2007/000 me: 113160 cm ³ sity: 0.89388 g/cm tive Mass Composition	Cable in CMSSW, checked wi ons (%) :	ith CMS
		Carbon	17.1	
		Hydrogen *	2.4	
		Nitrogen	0.1	
		Oxygen	0.7	
		Fluorine	9.5	
		Aluminium	40.1	
		Silicon	0.1	
		Copper	28	
		Silver	2	
······································	SA DILVENT		* boun	id state
Axial cables COMPOUND f1:0.171 f3:0.001 f5:0.095 f7:0.001 f9:0.02 Bail Connectors	Name: CAB-AXIA ▼ M1: CARBON ▼ M3: NITROGEN ▼ M5: FLUORINE ▼ M7: SILICON ▼ M9: SILVER ▼	Mi f f f	K: Mass ▼ 2:0.024 4:0.007 5:0.401 8:0.28	Elements: 79 M2: HYD_Cbnd M4: OXYGEN M6: ALUMINUM M8: COPPER

COMPOUND	Name: EC-CIRCP V	Mix: Mass 🔻	Elements: 1012 V
f1:0.134	M1: CARBON V	f2: 0.022	M2: HYD Cbnd 🗸
f3: 0.003	M3: OXYGEN 🔻	f4:0.129	M4: ALUMINUM V
f5: 0.001	M5: SILICON V	f6:0.002	M6: MANGANES V
f7:0.413	M7: IRON V	^{f8:} 0.263	M8: COPPER V
f9: 0.015	M9: ZINC V	f10: 0.018	M10: SILVER V
f11:	M11: 🔻	f12:	M12: 🔻
Duralium: Al-6082			

Region Represents: PIXEL CABLE

FLUKA region name: **Tkbhpcab** FLUKA Material name: **BHPIXCAB** Information from GEANT 4 model in CMSSW

Volume: 1861.3 cm³ Density: 2.25064 g/cm Relative Mass Compositions (%) :

carbon	26.30
iron	14.80
manganese	0.10
copper	47.50
fluorine	7.20
hydrogen *	4.10

* bound state

10					
U	COMPOUND	Name: BHPIXCAB	Mix: Mass 🔻	Elements: 46 🔻	
U	f1:0.263	M1: CARBON V	f2:0.041	M2: HYD Cbnd 🔻	
U	f3:0.072	M3: FLUORINE V	f4:0.148	M4: IRON V	
U	f5: 0.475	M5: COPPER V	f6:0.001	M6: MANGANES V	
		Name DUDDA	LALL AN	Flammandar a se	

Region Represents: Cable Tray and Cables

FLUKA region name: R059b FLUKA Material name: CABLE_AV Information from Duccio's tables

Volume: ? Density: 0.88 g/cm Relative Mass Compositions (%) :

> Elements: 10..12 V M2: ALUMINUM V

M4: KAPTON V

M6: POLYETHE ▼ M8: Plexigla ▼ M10: ST.STEEL ▼ M12: ▼

* bound state

Mix: Mass v f2: 0.04529 f4: 0.00733 f6: 0.08357

f8:0.00401

f10:0.44182 f12: CABLE-AV:

Copper	33.720
Silver	0.602
Aluminium	4.529
Iron	27.296
Nickel	6.185
Manganese	0.884
Chromium	8.174
Molybdenu m	1.105
Phosphor	0.020
Sulfur	0.004
Cobalt	0.044
Carbon	9.689
Nitrogen	0.109
Hydrogen	1.293
Oxygen	0.435
Silicon	0.521
Fluorine	5.402

fl:0.3372

f3:0.00602

f5:0.06864

f7:0.0017

f9:0.00437 f11:

EE/EB service channel, based on duccios numbers + st. steel for cable trays
COMPOUND
Name: CABLE-AV

M1: COPPER V

M3: SILVER V

M5: C6F14 v

M9: RILSAN V

M7: SiO2 🔻

M11: 🔻

