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MOTIVATION 

Fast detectors are necessary to cope up with high luminosity experiments 

High pileup environment expected in near-future experimental scenarios 

To disentangle overlapping events in the drift volume, a resolution in the drift direction 
is necessary. 

It depends on the response time, i.e., the time between the arrival of the radiation and 
the rise of the electronic pulse which leads to a finite temporal resolution 
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TIME RESOLUTION 

 Time resolution is influenced by 

 Fluctuations during primary ionization 

 Fluctuations during transport (diffusion) 

 Fluctuations during amplification 

 Fluctuations during signal acquisition (electronics) 
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PICOSEC- AN EXPERIMENTAL IMPLEMENTATION 

 One of the very recent 
efforts 

 Reduce primary 
ionization fluctuations 
 make it happen in a small 

conversion layer 

 Reduce transport 
fluctuations 
 reduce transfer volume and 

maintain suitable range of 
electric field 

Eraldo, Detector Seminar, 29/09/17 
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NUMERICAL EXPLORATION OF PICOSEC-LIKE DEVICES 

 Adopt the PICOSEC geometry 
 Assume periodic structure 

 Ignore non-uniformities such as spacers 

 Use a fixed point / line / surface to release electrons 
 A point, at present 

 The results presented here are preliminary in nature 

  

This work is essentially a continuation of our works presented 

At Trieste in MPGD 2015 [Time Resolution of Micro-Pattern Gaseous Detectors, RD51 Note 2016-002, 
arXiv: 1605.02867], and 

At Ghent in RPC2016 [Numerical study on the effect of design parameters and spacers on RPC signal 
and timing properties, 2016 JINST 11 C09014] 
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SIMULATION FRAMEWORK 

Garfield 
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Analyze signal waveforms to 

estimate time resolution 

Use S-R theorem 



SIMULATION GEOMETRY 

Drift gap: 200 mm 

Amplification gap: 128 mm 

Wire diameter:18 mm 

Wire pitch: 45 mm 

Wire cross-section modelled 

by a cylinder of sides: 16 

Target element size: 10 mm 
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TRANSPORT PROPERTIES FOR NE:C2H6:CF4(80:10:10) 

Electric field more than 10kV/cm should be suitable for this gas mixture 
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VOLTAGE CONFIGURATION, FIELD AND DRIFT LINES 

Anode: 275V, Mesh: Grounded, Drift: -450V 

This is not an optimum voltage configuration, but one among many “cherry”-s (slide 26 of Eraldo’s talk on 29/09/17) 
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AVALANCHE 

Electrons Ions 

Eraldo, Detector Seminar, 29/09/17 

23.5% of drift volume electrons go into amplification zone: improves for smaller drift and larger amplification field 

85% of amplification zone ions get collected by the mesh; 44% of total ions collected at the cathode 
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SIGNAL 

Eraldo, Detector Seminar, 29/09/17 

Simulated 

Simple assumption of constant ion mobility  
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RAW SIGNAL TO TIME RESOLUTION 

 Store individual raw signals per event (amplitude versus time) 

 Number of events: 25000 

 Neglect signals below threshold: 10 pA 

 Carry out standard signal analysis as done for experimental data 

 Use C / C++ / ROOT 

 Leading Edge Threshold: 1 nA 

 Constant Fraction Discrimination: 10% of peak 
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TIME SPECTRA 

LED spectrum CFD spectrum 
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EFFECT OF ELECTRONICS 
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CFD provides a 

smaller estimate of 

the time resolution, 

as expected 



EFFECT OF VOLTAGE / FIELD CONFIGURATION 

LED Values CFD Values 
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EFFECT OF GAS MIXTURE 

Replace ethane by isobutane: The transport properties are only slightly altered. 

Anode 275 V and Drift 450 V: With isobutane the resolution is 78 ps, in comparison to 65 ps with ethane. 
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EFFECT OF GEOMETRY 

If the amplification gap is considered to be 128mm from 

the top of the mesh (as shown above), the time resolution 

is 132 ps in place of 65ps! 

Strong influence of the amplification geometry and field. 
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Variation of drift gap 



HOW ABOUT A NO-MESH GEOMETRY? 

Point to be noted: 

•PicosecGain: ~1200 

•Parallel PlateGain: ~ 500000 

Without Penning effects 
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The PICOSEC has earlier dimensions 

•Drift length: 200 mm 

•Wire diameter: 18 mm 

•Amplification gap: 128 mm 

•The no-mesh (parallel-plate) device length 

of the gas volume: 346mm (200+18+128) 



COMPUTATIONAL RESOURCES USED 

 Workstation with two XEON E5 2600 processors @ 2.3GHz 

 Used 8 cores (workstation has 64) 

 Used 2 GB RAM (workstation has 128GB) 

 Initial solution: 15 minutes (~2000 elements, 30 repetitions on X and Y, 4mm long device) 

 Subsequent solutions (same geometry, different voltage configurations): couple of minutes 

 Production of fast volume: 3 hours (~6000 nodes) 

 Generation of raw signals: 10 minutes (microscopic tracking) 

 Post-processing using independent codes (C / C++ / ROOT): few minutes 
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SUMMARY 

 Simulation results are reasonably close to the experimental results. 

 Variations of gas mixture and geometry can be studied easily – two examples have 
been presented. Both, as expected, have significant influence. 

 Funnelling does not seem to be very important: a drift field of just below 25 kV/cm 
and an amplification field of slightly above 25 kV/cm produced nice results. 

 A geometry without mesh may also work, but it is likely to be prone to sparks at such 
high fields where transport properties have ‘suitable’ values. The mesh impedes 
transport as well as absorbs large number of electrons and ions. On one hand, this 
leads to worsening of time resolution, on the other, it saves the device from sparks. It 
is too early to decide, though. 
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FUTURE PLAN 
 Refine existing results (easy), compare with the already vast body of experimental data (time consuming) 

 Geometry 
 Microbulk, thin-mesh bulk (easy) 

 Effects of pillars  and other non-uniformities (easy, but time consuming) 

 Effect of mesh (easy, but the understanding may not be) 

 Other geometrical  variations (easy; include both gaps – is there any optimum value of drift gap around 200 – 300 mm?) 

 Gas 
 Include Penning transfer (easy, but need experimental data for relevant gas mixtures) 

 More gas mixtures (easy) 

 Effect of primary ionization in the however-small gas volume (easy) 

 Electronics 
 Include ideal electronics (easy); include noise (easy) 

 Include formal data analysis (follow experimental approach, also explore alternative approaches) 

 Explore ways to reduce fluctuations during amplification (interesting but not tried) 

 Primary ionization physics (interesting but not tried) 
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