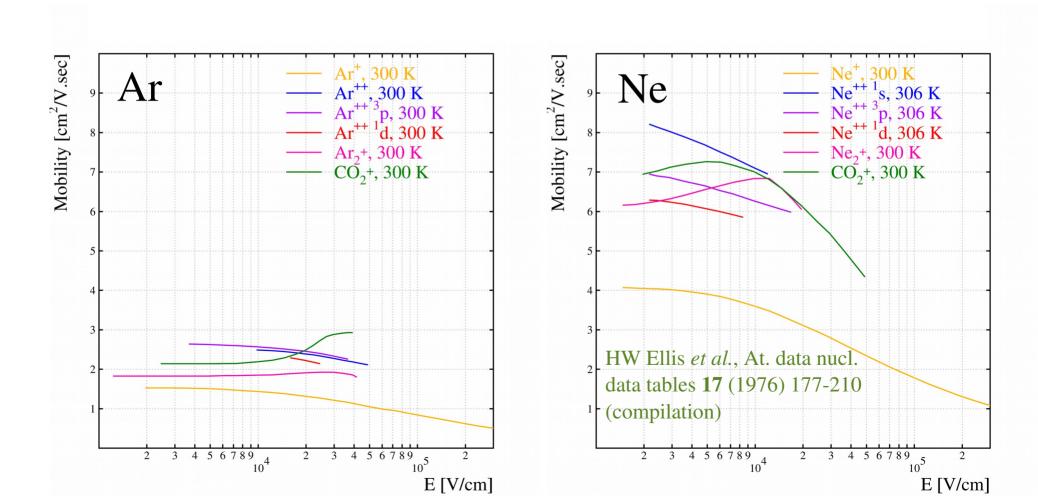
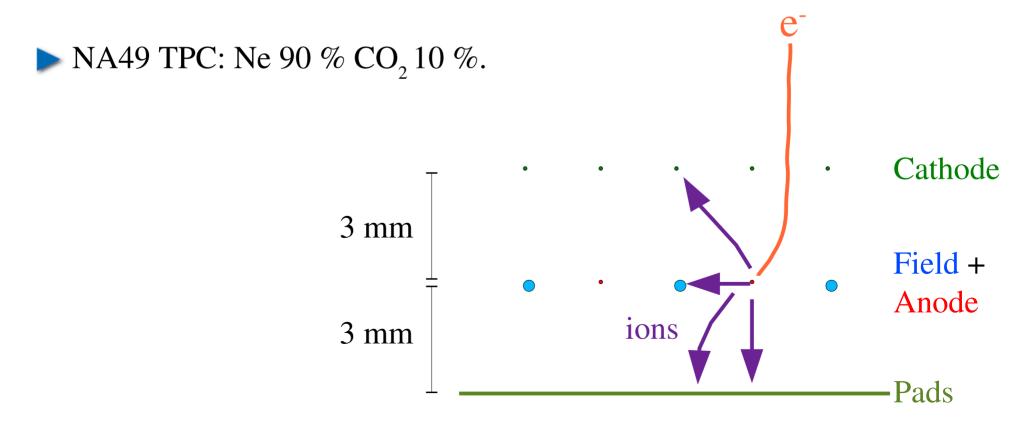
Gas-based detectors


Ion transport

Ions

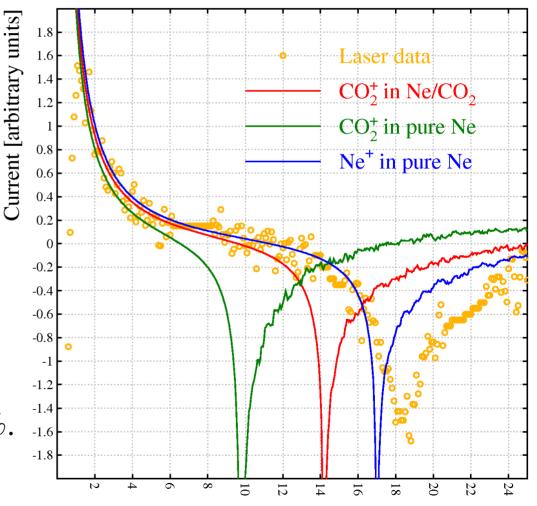
- Avalanches produce not only electrons, but also ions at least as many.
- ► Detectors like Micromegas and wire chambers get their signal mostly from ion motion (\rightarrow Signals).
- Hence we better know the basics of ions: *which ions* are moving ? *how fast* do the ions move ?
 are they subject to *diffusion* ?


Ar⁺ and Ne⁺ mobility $\equiv v_{\rm D}(E) / E$

Noble gas ion mobilities are well known:

Ion induced signals

After the break, we will calculate the current induced on the pads of a TPC by ions moving from the anode wires to the field wires:

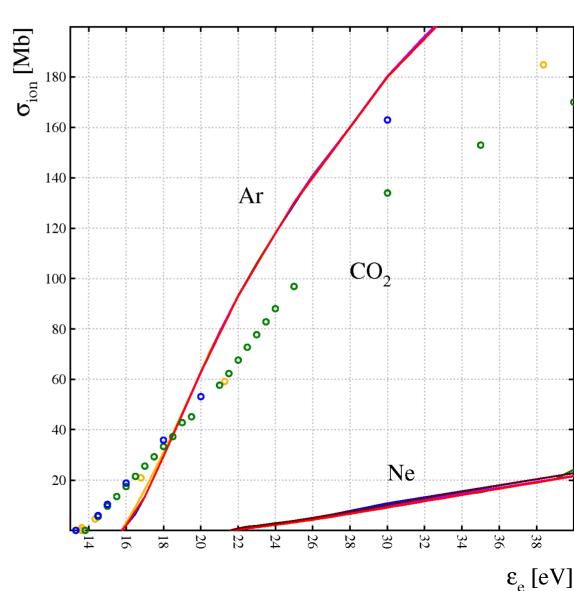

How about Ne⁺ in Ne?

Ne⁺ ions in Ne come reasonably close to the measurements ...

▶ we've used it for years ...

but does it make sense ?

NA49 TPC: Ne 90 % $CO_2 10$ %. [Data: Rainer Renfordt]

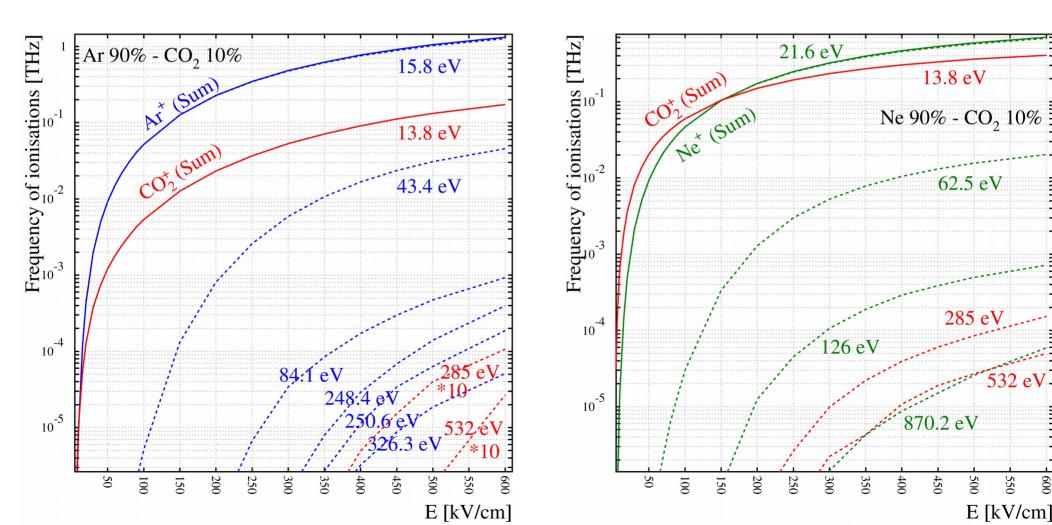


Time taken by an ion from anode wire to field wire $[\mu s]$

Electron-impact cross sections

 \triangleright CO₂⁺ and Ar⁺ compete.

Ne⁺ has higher threshold and is produced less.



[Pure gases, data from LXcat]

Avalanche products

Avalanche products & by-products

At very low pressure, there are traces of O⁺, C⁺ and CO⁺:
O⁺ + CO₂ \rightarrow O₂⁺ + CO
k = 1.03 ± 0.10 10⁻⁹ cm³/s
O₂⁺ + CO₂ + M \rightarrow O₂⁺ CO₂ + M
k = 0.5 ± 0.1 10⁻³⁰ cm⁶/s
C⁺ + CO₂ \rightarrow CO⁺ + CO
k \approx 1.1 10⁻⁹ cm³/s
CO⁺ + CO₂ \rightarrow CO + CO₂⁺
k \approx 1.0 10⁻⁹ cm³/s

These traces probably also exist at higher pressure, but they disappear rapidly, except the cluster and O_2^+ .

[H.W. Ellis et al., J. Chem. Phys. 64 (1976) 3935-3941, 10.1063/1.432024]

Reaction time and Rate constant: 2-body

Consider a charge transfer reaction A⁺ B → A B⁺:
 rate ∝ density of B molecules N_B [1/cm³];

The proportionality factor is called rate constant k:
 rate = k [cm³/s] N_B [1/cm³].

> The reaction time τ is the reciprocal of the rate.

Example: Ar⁺ in Ar (resonant charge exchange)
 k = 4.6 10⁻¹⁰ cm³/s, N ≈ 2.45 10¹⁹/cm³
 rate = 1.1 10¹⁰/s, τ = 100 ps.

3-body reactions

Bound state formation requires the evacuation of excess energy & momentum through internal degrees of freedom (rotation, vibration), or via a "helper".

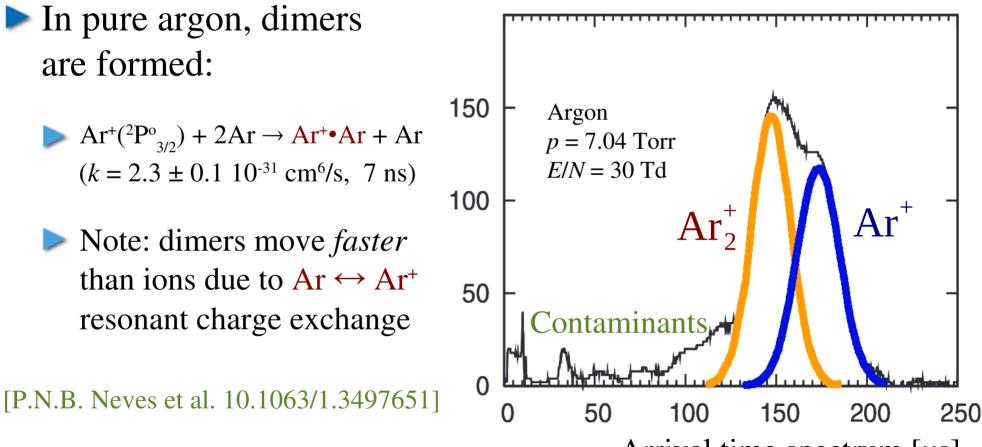
The rate constant in 3-body reactions has the unit of cm⁶/s.

► Example 2:
$$CO_2^+ + CO_2^- + CO_2^- \rightarrow CO_2^+ + CO_2^-$$

► $k = 2.4 \ 10^{-28} \ cm^6/s$
► rate = $k \ N^2 = 1.4 \ 10^{11}/s, \ \tau = 7 \ ps$

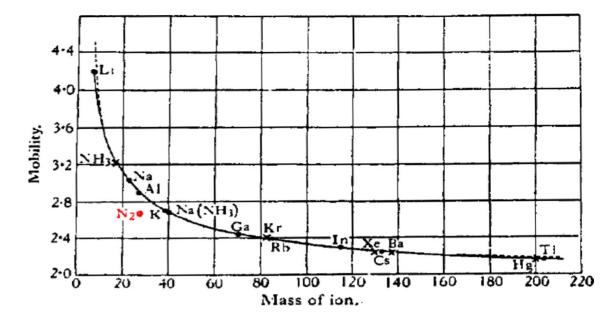
Thermal collision frequency

► Mean relative velocity (μ = reduced mass):

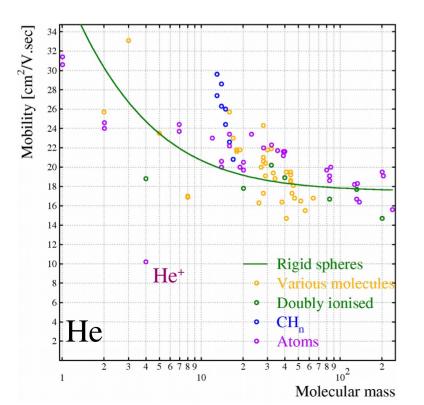

$$\overline{v}_{\rm rel} = \sqrt{\frac{8k_{\rm B}T}{\pi\mu}} \approx 570 \, {\rm m/s}$$

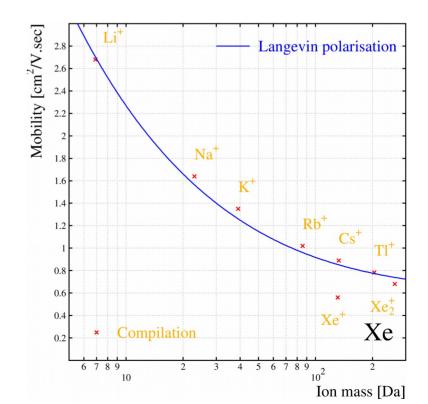
Nultiplying with the cross section σ gives the rate constant: $k = \sigma \overline{v}_{rel} \approx 9 \ 10^{-10} \ cm^3/s$

Combine with the number density to get collision time:


$$\tau = \frac{1}{N\sigma \bar{v}_{rel}} = \frac{k_B T}{p} \frac{1}{\sigma \bar{v}_{rel}} = \frac{1}{p\sigma} \sqrt{\frac{\pi \mu k_B T}{8}} \approx 45 \text{ ps}$$

Ions drifting in pure Ar




Arrival time spectrum [µs]

He, Xe, N₂

[J. A. Hornbeck, J. Phys. Chem. **56** (1952) 829–831 10.1021/j150499a003, copied from J.H. Mitchell and K.E.W. Ridler, Proc. Roy. Soc (London) A **146** (1934) 911.]

Principal reactions involving CO₂

Ar⁺: charge exchange,
$$\tau \approx 0.85$$
 ns
Ar⁺ + CO₂ → Ar + CO₂⁺

► CO_2 : 3-body association, 7-20 ps ► $CO_2^+ + 2CO_2 \rightarrow CO_2^+ \cdot CO_2 + CO_2$

▶ [For 10 % CO₂, atmospheric pressure, room temperature]

Ne⁺ in Ne ... did it make sense ?

The avalanche produced little Ne⁺ to begin with;

 $IP_{Ne^+} > IP_{CO_2^+}$: Ne⁺ took 8 ns to generate a CO₂⁺;

 \blacktriangleright in nearly pure Ne, there could be some Ne₂⁺.

► Instead, we obtained $CO_2^{+}CO_2$.

Situating cluster ions

Chemically bound molecules:
 covalent or ionic bond

Cluster ions:

0.75 - 11.1 eV

0.09 - 1.7 eV

0.0009 - 0.1 eV

van der Waals molecules:
 bound by van der Waals forces
 observed at low temperatures

constituents retain their identity

bound by charge-induced dipole forces

[B.M. Smirnov, "Cluster Ions and Van Der Waals Molecules," CRC press]

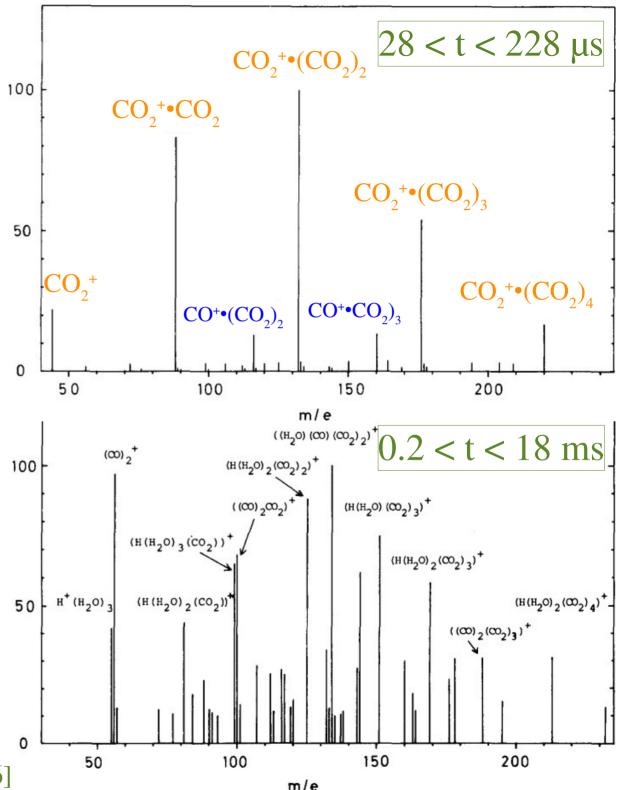
Binding energy of CO₂ cluster ions

Binding energy:
CO₂⁺•CO₂: 0.60 eV (16.2 kcal/mol)
CO₂⁺•2CO₂: 0.26 eV (6.0 kcal/mol)
[M. Meot-Ner and F.H. Field, J. Chem. Phys., 66 (1977) 4527]

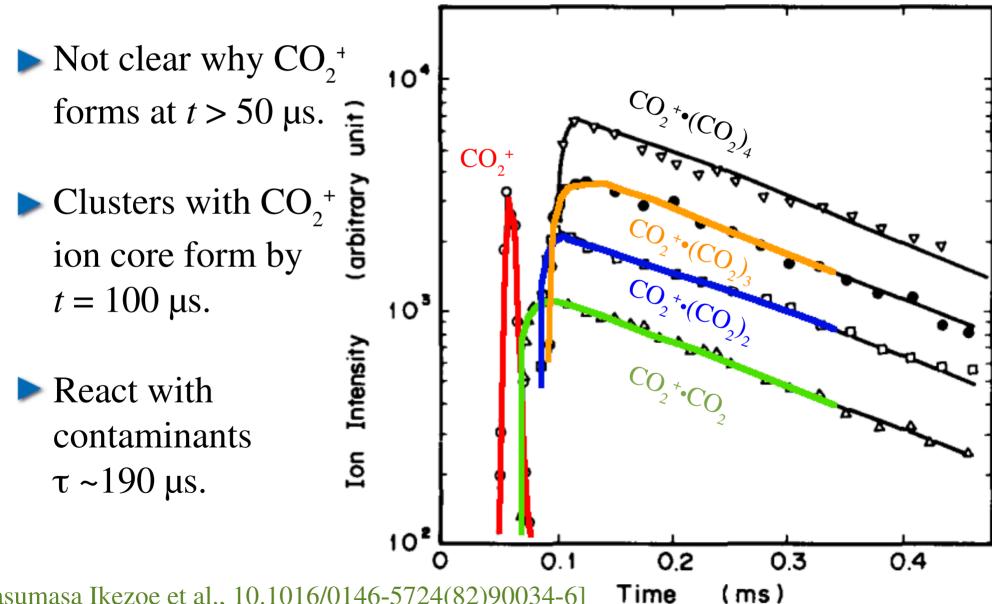
 $CO_2^{+\bullet}CO_2$ $0.51 \, \text{eV}$ $(11.8 \pm 1.0 \, \text{kcal/mol})$ $(CO_2)_2^{+\bullet}CO_2$ $0.14 \, \text{eV}$ $(3.3 \pm 1.4 \, \text{kcal/mol})$ $(CO_2)_3^{+\bullet}CO_2$ $0.12 \, \text{eV}$ $(2.8 \pm 1.4 \, \text{kcal/mol})$

[S.H. Linn and C.Y. Ng, J. Chem. Phys. 75 (1981) 4921]

(Conversion: 1 kcal/mole = 0.043 eV, thermal: 0.03 eV.)


Life cycle of $CO_2^{+\bullet}(CO_2)_n$

- CO₂⁺•CO₂ has a dissociation energy of 0.6 eV far above thermal energies at 1 bar. It is a so-called long-lived cluster:
 calculated lifetime = 5 ns
 [B.M. Smirnov, "Cluster Ions and Van Der Waals Molecules," CRC press]
- ► much longer than the formation time $\tau = 7-20$ ps via 3-body association in 10 % CO₂ with Ar + CO₂ as "helpers".
- Any isolated CO_2^+ rapidly binds again.
- ► $CO_2^{+\bullet}(CO_2)_n$ probably lives shorter but will recombine. The cluster size *n* will therefore fluctuate at the ns time scale.


CO₂ at 1 bar

- At 1 bar clusters are observed to emerge and then decay:
 - Until 200 µs: $CO_2^{+\bullet}(CO_2)_n$ and $CO^{+\bullet}(CO_2)_n$
 - Later: only clusters from contaminants, e.g. H₂O, OH ...

[Yasumasa Ikezoe et al., 10.1016/0146-5724(82)90034-6]

CO₂ at 1 atm: cluster (dis)appearence

[Yasumasa Ikezoe et al., 10.1016/0146-5724(82)90034-6] Time

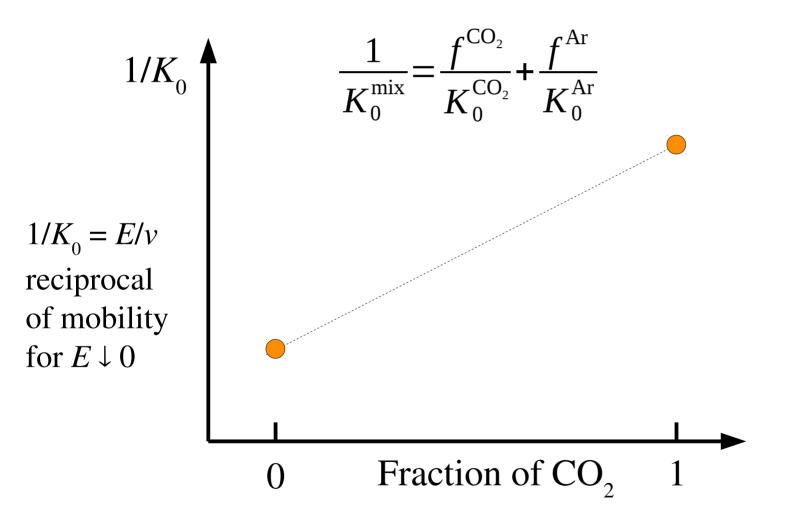
Experimental check

Remains showing that experiments indeed observe $CO_2^{+}(CO_2)_n$ and not CO_2^{+} .

This we do by comparing:
 measured mobility as function of mix, with
 mobility of CO₂⁺, CO₂⁺ clusters, Ar⁺ and Ne⁺ from literature.

Cluster mobility in Ar-CO₂ & Ne-CO₂

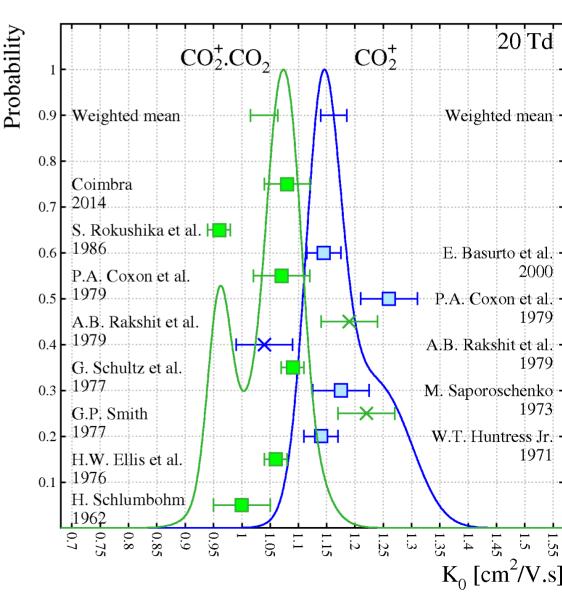
One needs as ingredients:


the Blanc interpolation formula;

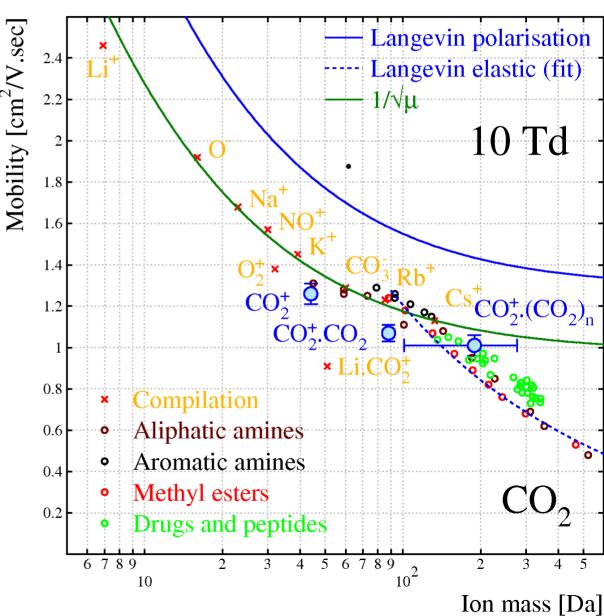
the mobility of the ions in the pure gases.

There are measurements of:

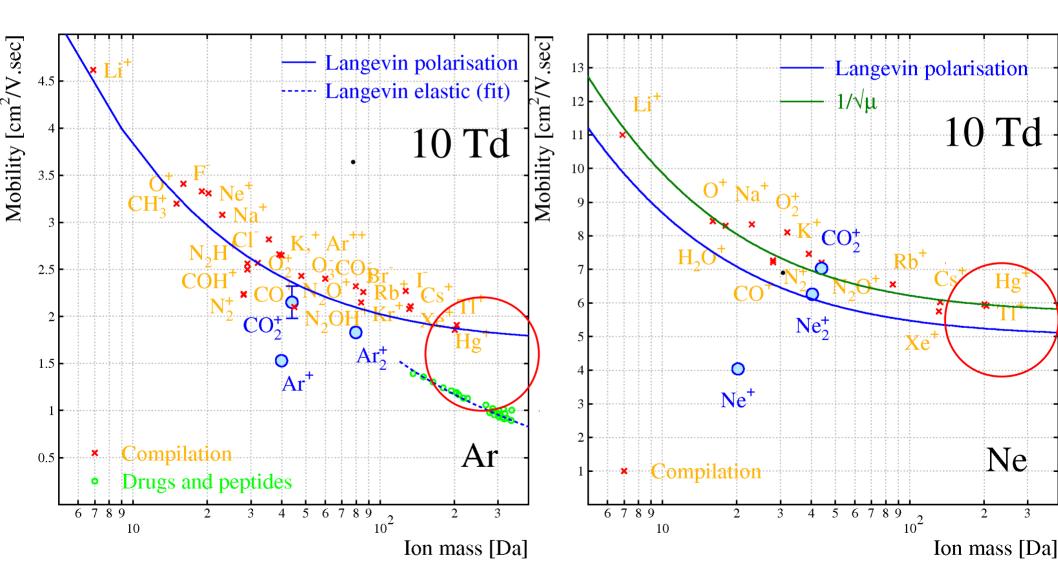
- Ar⁺ in Ar, Ne⁺ in Ne,
- \triangleright CO₂⁺ in Ar and in Ne;
- \triangleright CO₂⁺, CO₂⁺•CO₂ and CO₂⁺•(CO₂)_n in CO₂.
- But we have not found measurements of:
 mobility of CO₂⁺•(CO₂)_n neither in Ar nor in Ne;
 we can get an idea from the mass-mobility relation.


Blanc's mobility interpolation

[A. Blanc, *Recherches sur les mobilités des ions dans les gaz*, J. Phys. Theor. Appl. **7** (1908) 825-839, 10.1051/jphystap:019080070082501]

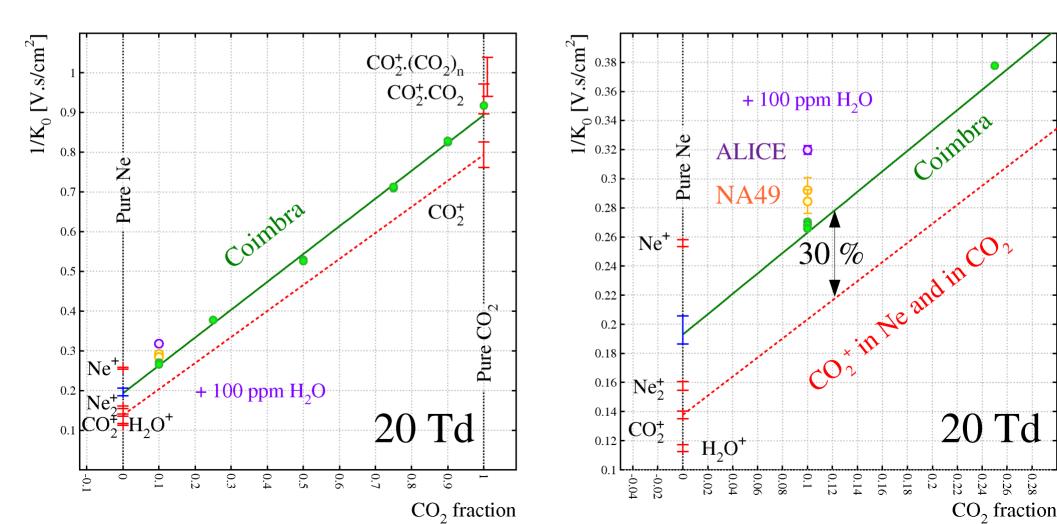

Mobility of CO_2^+ and $CO_2^{+\bullet}(CO_2)_n$ in CO_2^-

- At atmospheric pressure, one almost inevitably measures $CO_2^{+}CO_2$ or $CO_2^{+}(CO_2)_n$.
- Cluster mobility 10-15 % smaller than ion mobility
- Two measurements exist of clusters with large *n*.



Mass-mobility in CO₂

- Langevin polarisation limit not appropriate for many ions.
- Langevin elastic limit can fit molecular ions.
- Uncertainty for cluster ion mobility.
- Little resonant charge exchange effect.

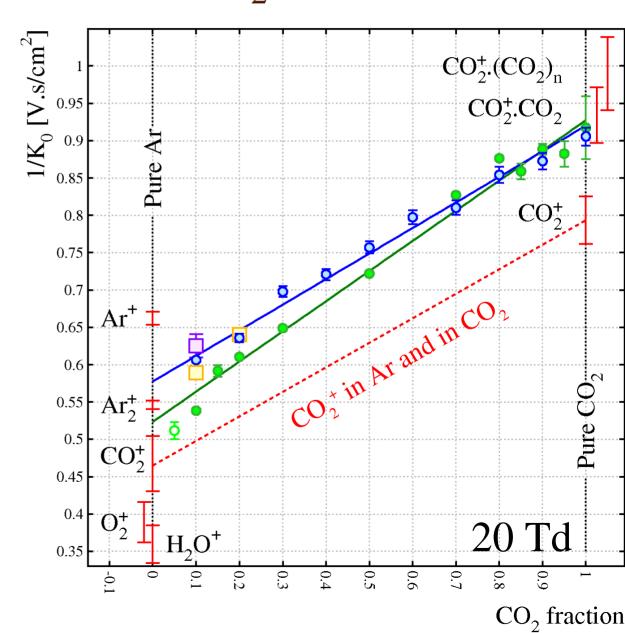


Mass-mobility in pure Ar and Ne

Blanc diagram for Ne-CO₂

 \blacktriangleright Like in Ar-CO₂, CO₂⁺ forms clusters in Ne-CO₂.

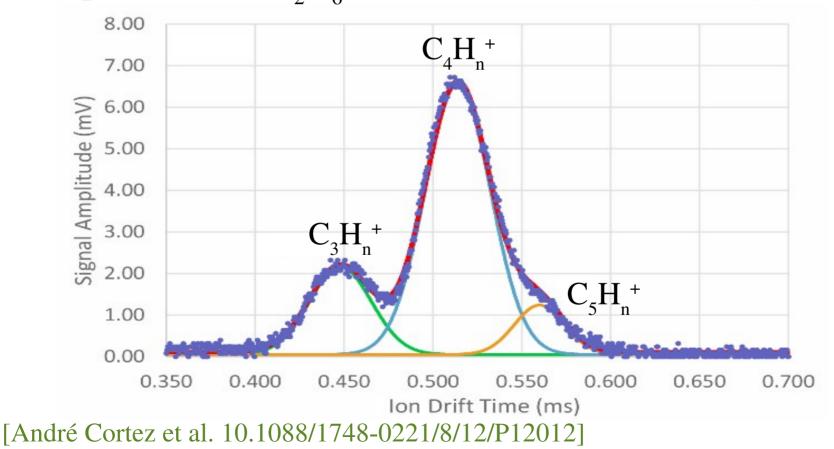
Blanc diagram for Ar-CO₂

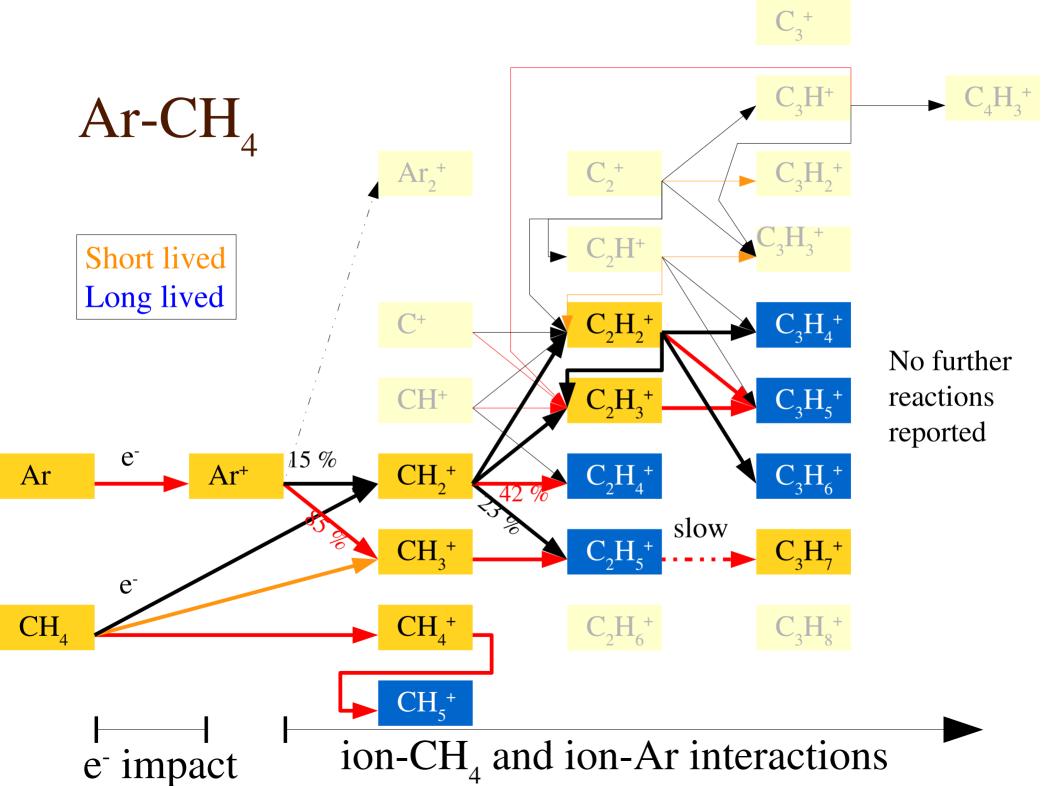

Coxon: pure CO_2

Schultz: 1 atm

Coimbra: 0.01 atm, smaller clusters ?

▶ NA49: 1 atm

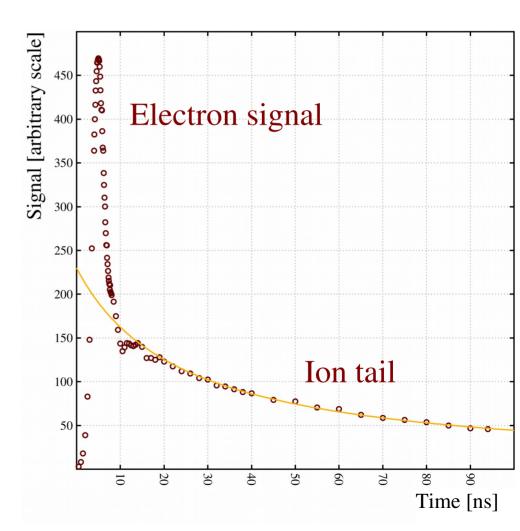

ALICE: 1 atm, water clusters ?



How about alkanes ?

Ar 90 % - C_2H_6 10 %, at low pressure.

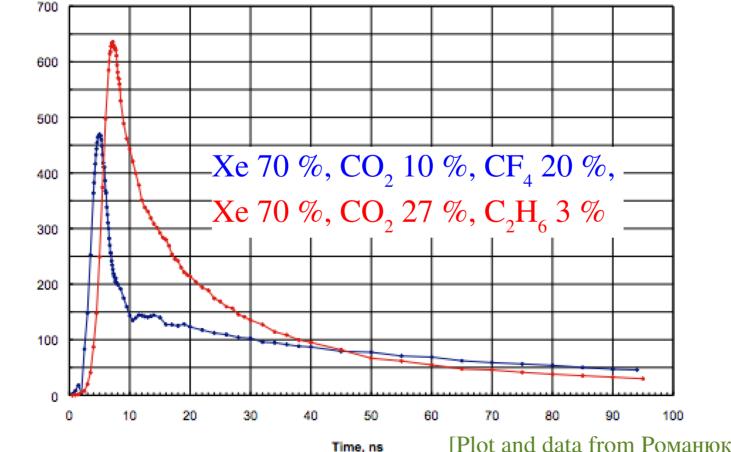
Expect Ar⁺ or $C_2H_6^+$ but ... none are seen – why ?



Atlas TRT signals

Data:

Xe-CO₂-CF₄ 70/10/20
Straw tube V_w =1530 V r_w = 15 µm, r_t = 2 mm
Fit: $1/(t+t_0)$



[Data from Романюк Анатолий Самсонович]

Current, arb. units

 \triangleright C₂H₆ makes the tail steeper and the mobility larger:

[Plot and data from Романюк Анатолий Самсонович]

Ionisation potentials

 $ightarrow C_2 H_6$: 11.52 eV

 \blacktriangleright Xe⁺(²P_{3/2}): 12.129843 eV

 $\blacktriangleright Xe^{+}(^{2}P_{1/2}): 13.44 \text{ eV}$

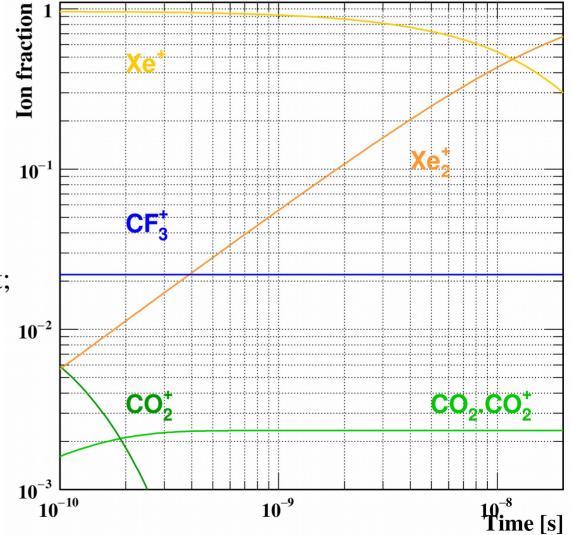
 \triangleright CO₂: 13.776 eV

► CF_4 : 15.70 eV for CF_3^+ (main ionisation channel) 16.2 ± 0.1 eV for CF_4^+

Reactions in Xe-CO₂-CF₄

Xe⁺ + Xe + M \rightarrow Xe₂⁺ + M [A.P. Vitols and H.J. Oskam, Phys. Rev. A 8 (1973) 1860-1863.]

 $CO_2^+ + CO_2 + M \rightarrow CO_2^+ CO_2^+ + M$ $k = 2.4 \ 10^{-28}$ [B.M. Smirnov, Cluster Ions and Van Der Waals Molecules]


CO₂⁺ + Xe \rightarrow CO₂ + Xe⁺ $k = 6.0 \ 10^{-10} \pm 30 \ \%$ [V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. **62** (1986) 553-672.]

Note: CF_4^+ is not produced, (only CF_3^+)

Evolution of $Xe-CO_2-CF_4$ (70-10-20)

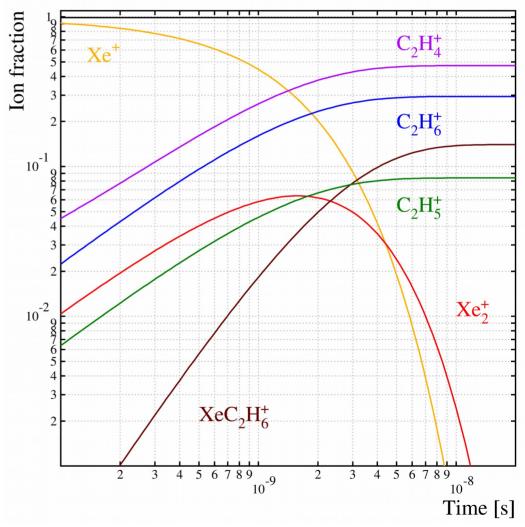
Initial ion mix for 100 kV/cm;

- Xe⁺ and Xe₂⁺ dominate, Xe_n⁺ for n > 2 are not shown: rates are not known.
- \triangleright CF₃⁺ is an avalanche product; with its low IP, it does not react;
- ► CF_4^+ is not produced, CF_4 has a high IP, is not attacked by ions.
- CO₂⁺ transfers to Xe⁺ and rapidly forms clusters.

Reactions in $Xe-C_2H_6$				
$\sim C_2 H_4^+ + C_2 H_6^- \rightarrow C_3 H_6^+ + C H_4^-$	7 %	$k = 5.3 \ 10^{-12} \pm 10 \ \%$		
$\rightarrow C_3 H_7^+ + C H_3$	93 %			
$\sim C_2 H_5^+ + C_2 H_6^- \rightarrow C_3 H_7^+ + C H_4^-$	14 %	$k = 3.8 \ 10^{-11} \pm 10 \ \%$		
$\blacktriangleright \rightarrow \ \mathbf{C}_4 \mathbf{H}_9^+ + \mathbf{H}_2$	86 %			
$\sim C_2 H_6^+ + C_2 H_6^- \rightarrow C_3 H_8^+ + C H_4^-$	42 %	$k = 0.19 \ 10^{-10} \ \pm \ 10 \ \%$		
$\rightarrow C_3 H_9^+ + C H_3$	58 %			

[V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. **62** (1986) 553-672, A.F.V. Cortez et al. 2013 JINST 8 P07013, J.M.C. Perdigoto et al. 2017 JINST 12 P09003] $Xe^+ + Xe + M \rightarrow Xe_2^+ + M$ $k = 2.0 \pm 0.2 \ 10^{-31}$

[A.P. Vitols and H.J. Oskam, Phys. Rev. A 8 (1973) 1860-1863.]

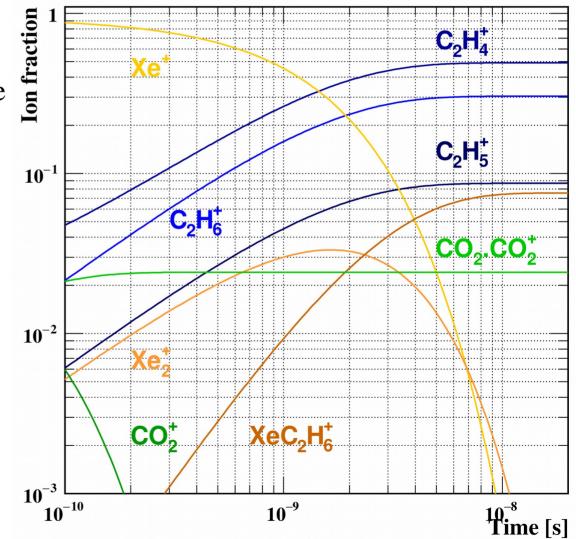

Xe⁺ + C₂H₆ → Xe + C₂H₄⁺ + H₂ 55 % k = 9.2 10⁻¹⁰ ± 20 % → Xe + C₂H₅⁺ + H 10 % → Xe + C₂H₆⁺ 35 %
Xe₂⁺ + C₂H₆ → Xe C₂H₆⁺ + Xe k = 6.8 10⁻¹⁰ ± 20 %
[Kevin Giles et al., J. Phys. B: At. Mol. Opt. Phys. 22 (1989) 873-883.
N.G. Adams et al., J. Phys. B: At. Mol. Phys. 13 (1980) 3235-3246.]

```
Clear [nXe, nXe2, nXeC2H6, nC2H4, nC2H5, nC2H6]
Mathematica
                          evol = Assuming[\{rXeXe2 > 0, rXe2XeC2H6 > 0, rXeC2H4 > 0, rXeC2H5 > 0, \\
                             rXeC2H6 > 0, n0Xe > 0, n0C2H4 > 0, x > 0
                            Simplify[DSolve[
                               \{nXe'[x] = -(rXeXe2 + rXeC2H4 + rXeC2H5 + rXeC2H6) nXe[x],
                               nXe[0] = n0Xe,
                               nXe2'[x] = rXeXe2 nXe[x] - rXe2XeC2H6 nXe2[x],
                               nXe2[0] = 0,
                               nXeC2H6'[x] = rXe2XeC2H6nXe2[x],
                               nXeC2H6[0] = 0,
                               nC2H4'[x] = rXeC2H4nXe[x],
                               nC2H4[0] = n0C2H4,
                               nC2H5'[x] = rXeC2H5nXe[x],
                               nC2H5[0] = 0,
                               nC2H6'[x] = rXeC2H6nXe[x],
                               nC2H6[0] = 0,
                               {nXe[x], nXe2[x], nXeC2H6[x], nC2H4[x], nC2H5[x], nC2H6[x]},
                              x]]]
                          CForm[%]
                          n0C2H4 (rXeC2H4 + rXeC2H5 + rXeC2H6 + rXeXe2)) /
                               (rXeC2H4 + rXeC2H5 + rXeC2H6 + rXeXe2),
                            nC2H5\left[x\right] \rightarrow -\frac{\left(-1 + e^{-\left(rXeC2H4 + rXeC2H5 + rXeC2H6 + rXeXe2\right) \ x}\right) \ n0Xe \ rXeC2H5}{rXeC2H4 + rXeC2H5 + rXeC2H6 + rXeXe2}
```

Evolution of $Xe-C_2H_6$ (97-3)

Initial ion mix for 100 kV/cm;

- after 10 ns, the only Xe-related ion that remains is XeC₂H₆⁺ which is made from Xe₂⁺;
- the diagram does not show the $C_3H_x^+$ and $C_4H_x^+$ ions subsequently generated by $C_2H_4^+$ and $C_2H_5^+$;
- ► Xe_n^+ for n > 2 are not shown because the rates are not known.


Reactions in $Xe-CO_2-C_2H_6$

All reactions from $Xe-C_2H_6$ and in addition:

CO₂⁺ + CO₂ → CO₂ + CO₂⁺
 IO0 % k = 3.7 10⁻¹⁰ ± 10 %
 [V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. 62 (1986) 553-672.]
 CO₂⁺ + CO₂ + M → CO₂•CO₂⁺ + M k = 2.4 10⁻²⁸
 [B.M. Smirnov, Cluster Ions and Van Der Waals Molecules]
 CO₂⁺ + Xe → CO₂ + Xe⁺
 IO0 % k = 6.0 10⁻¹⁰ ± 30 %
 [V.G. Anicich and W.T. Huntress Jr., Astrophys. J. Suppl. 62 (1986) 553-672.]

Evolution of $Xe-CO_2-C_2H_6$ (70-27-3)

- Initial ion mix for 100 kV/cm;
- CO₂⁺ rapidly forms clusters due to the large CO₂ fraction;
- CO₂ does not affect the dominance of $C_x H_y$ over Xe.
- ► Xe_n^+ for n > 2 are not shown because rates are not known.

$$Xe_{2}^{+} - Xe_{3}^{+}$$

► We have not found the rate comstant for Xe₃⁺ production in the literature, but H. Helm has measured [293 K]:

$$K_{\rm e} = \frac{[{\rm Xe}_2^+][{\rm Xe}][{\rm Xe}]}{[{\rm Xe}_3^+][{\rm Xe}]} = \frac{k_{\rm r}}{k_{\rm f}} = 2.8 \pm 0.5 \ 10^{18}$$

- ▶ where k_{f} is the rate coefficient for the transformation of Xe_{2}^{+} to Xe_{3}^{+} , and k_{r} the rate for the reverse reaction.
- Given that $[Xe_3^+] / [Xe_2^+] = 3.6 \pm 0.6 \ 10^{-19} N$, the ratio of concentrations is 9.7 ± 1.6 at 293 K, atmospheric pressure and zero field.

[H. Helm, 10.1103/PhysRevA.14.680]

What have we learned ?

After 10 ns, the ion with the lowest IP remains:

In Xe without C₂H₆, this is Xe⁺ and related;
 if C₂H₆ is present, C_xH_y⁺ dominates.

▶ In the long run, Xe^+ is likely to form Xe_n^+

Mobility and stability of small Xe_n⁺

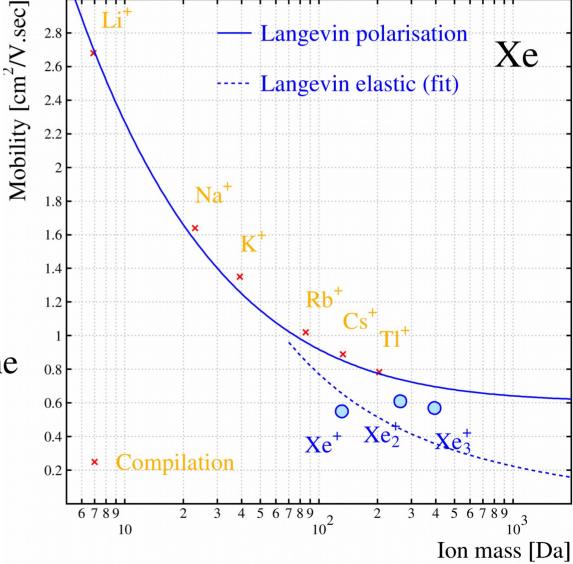
Mobilities are known for the smallest Xe clusters;

these are remarkably stable;

► ΔH for $n \ge 5$ clusters is nearly constant at ~0.1 eV.

Xe _n ⁺	Mass	μ (<i>E</i> = 0, <i>T</i> =300 K)	$\Delta H n-1 \rightarrow n$	References
	[Da]	$[cm^2/V.s]$	[eV]	
Xe ⁺	131.293	0.55	-	Helm, Viehland-Mason
Xe ₂ ⁺	262.586	0.61	1.05 (5 %)	NIST, Helm 1976
Xe ₃ ⁺	393.879	0.57	0.29 (5 %)	NIST, Helm 1976
Xe ₄ ⁺	525.172	?	0.26 (3 %)	NIST, Hiraoka
Xe ₅ ⁺	656.465	?	0.11 (5 %)	NIST, Hiraoka

[Kenzo Hiraoka et al. 10.1063/1.457751, M. Amarouche et al. 10.1063/1.454267]


Mobility of ions in Xe

 \blacktriangleright *E*/*N* = 10 Td, extrapolated from higher

E/N where needed (Xe⁺).

- Polarisation limit assuming $\alpha_{xe} = 4.01$ D.
- ► Xe₂⁺ and Xe₃⁺ are below the polarisation limit.

[From the H.W. Ellis et al. compilations except Xe⁺ and Xe₂⁺, which are from P.N.B. Neves, 10.1063/1.3497651]

Large Xe_n clusters

- Much larger clusters, with a size of 10⁴, have been observed.
- They are produced by "supersonic adiabatic expansion through a nozzle."

Summary ions

- Avalanches ionise the constituent gases, and the initial ions undergo a staggering sequence of reactions.
 - In Ar-CO₂ and Ne-CO₂ mixtures, the signal ions are CO₂⁺•(CO₂)_n clusters, which are slower than CO₂⁺;
 water forms larger clusters, further reducing the mobility;
 pure noble gases form dimers, Ar₂⁺, Ne₂⁺ which are faster than Ar⁺ and Ne⁺ due to resonant charge exchange;
 Xe forms dimers, trimers and probably bigger objects;
 alkanes combine to form heavier molecules.
- There is room for theses in this field.