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Abstract

We discuss the signal propagation, strip termination and crosstalk in resistive plate chambers (RPCs) by analyzing
the explicit time domain solution of a two dimensional multi-conductor transmission line. It is shown that all the effects
can be calculated by elementary matrix manipulations. It is also shown that losses should not play a role for frequencies

o200MHz. r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In many large size detectors the readout
electrodes (strips) are very long i.e. the signal
propagation time is large compared to the signal
width. In that case the readout electrodes have to
be treated as a multi-conductor transmission line.
The induced signal acts as current source at some
point along the electrode. In order to avoid
multiple reflections, the strips have to be termi-
nated properly on at least one end. The strip-end
that is connected to the signal amplifiers has to be
designed such that the crosstalk is minimized.

In this note we will discuss a RPC with a
geometry similar to the design used for LHCb [1]

and ATLAS [2] to illustrate a very powerful
formalism for analyzing signal propagation, trans-
mission line termination and crosstalk. The results
are of course applicable to any detector geometry
that satisfies the requirements for a two-dimen-
sional transmission line. We will first introduce the
general theory and then apply the formalism to
some realistic geometries.

2. General solution

The theory of multi conductor transmission
lines is well developed. In this chapter we list the
general solutions without proof, details can be
found in Ref. [3]. We assume here that the width of
the readout strips is small compared to their length
and that the line is uniform meaning that the
geometry is independent of z (Fig. 1). In that case
the detector is a two-dimensional N-conductor
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transmission line and it is completely defined by
the N�N matrices #CC; #LL; #RR and #GG; the ‘per unit
length’ capacitance, inductance, resistance, and
transconductance matrix. For the examples given
later they were calculated with Maxwell [4] a finite
element field simulator program. In case these
matrices are independent of frequency (which will
be justified in the last chapter), the equations
describing the most general two-dimensional N
conductor transmission line in the TEM [3]
approximation are
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are the currents and voltages of the N individual
conductors at time t and position z along
the transmission line. If losses can be neglected
(which will be justified in the last chapter) the
matrices #RR and #GG are zero and the above equations
simplify to
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The general solution of these equations is
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where the Iþm xð Þ and I�m xð Þ are 2N arbitrary
functions and
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The matrix #TT contains the normalized eigenvectors
of the matrix #CC #LL and 1=v2i are the corresponding
eigenvalues. The matrix #ZZC is called the character-
istic impedance matrix. The individual functions
represent pulses that are running along the strips
in positive and negative direction without chan-
ging their shape. Note that in general the signal
propagation happens with N different velocities
and also note that the solution is completely
general.

The explicit form of these functions is deter-
mined by the line excitation mechanism and
boundary conditions at the strips ends z ¼ 0 and
z ¼ L: A detector signal acts as an ideal current
source I0ðtÞ at a position z ¼ z0 somewhere along a
conductor n; which defines the 2N functions.

Fig. 1. Two-dimensional multi-conductor transmission line.

The formalism for 2-dimensional transmission lines applies if

the cross-section is independent of z: The cross-section of the

individual conductors can be different.
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Hence we have the general solution
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which we can write as
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is easy to see that at z ¼ z0 it holds that
Iþ z0; tð Þ þ I� z0; tð Þ ¼ 0; :; I0 tð Þ; :; 0
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the required boundary condition. This solution
shows that there are pulses running symmetrically
in the positive and negative direction from the
point z0: The pulse running along one conductor is
a superposition of N times the same pulse-shape
I0ðtÞ running with N different velocities vi: There-
fore we find signal dispersion even for a lossless
transmission line which is called modal dispersion.

The pulses will travel until they hit the strip ends
where they are reflected according to the con-
nected networks. We assume now an arbitrary

interconnection of strips at z ¼ 0 and z ¼ L with
purely resistive loads. For z ¼ L we define Rij iaj
the resistors between strip i and j and Rii the
resistors between strip i and ground. The bound-
ary condition is then given by

V L; tð Þ ¼ #ZZT I L; tð Þ #ZZT ¼ #YY
�1

T

YT
ij ¼ �

1

Rij
iaj YT

ii ¼
XN
j¼1

1

Rij
ð6Þ

where we define #ZZT as the load impedance matrix.
The other strip end at z ¼ 0 will of course be
characterized by a different load impedance matrix
which we call #ZZP since we assume it is the readout
(preamplifier) side. The effect of the boundary is
that the voltage pulses are reflected according to

V�
refl ¼ #CCTV

þ and Vþ
refl ¼ #CCPV

�

where the reflection coefficient matrix G at the line
ends is defined as

#CCT ¼ #ZZT � #ZZC
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and the actual voltages at the strip ends are given
by

V L; tð Þ ¼ Vþ þ V�
refl ¼ #11þ #CCT

	 

Vþ ð7Þ

V 0; tð Þ ¼ V� þ Vþ
refl ¼ #11þ #CCP

	 

V�: ð8Þ

The matrix #11 ¼ Diag 1; y ; 1ð Þ is the unity matrix.
This is our final solution. Given the current pulse
I0ðtÞ at position z ¼ z0 on conductor n we know
the two pulses Vþ and V� running symmetrically
in both directions from z ¼ z0 towards the two line
ends from Eq. (5). The networks at the line ends
define the matrices #CCT and #CCP which give the
reflected and measured pulses. If the transmission
line is not terminated we of course have to add up
the multiple reflections.

3. Termination

If we want to eliminate reflections at the line end
z ¼ L the reflection coefficient matrix GT has to be

W. Riegler, D. Burgarth / Nuclear Instruments and Methods in Physics Research A 481 (2002) 130–143132



zero, i.e. the load impedance matrix #ZZT has to be
equal to the characteristic impedance matrix #ZZC :
The termination resistors RT

ij are calculated by
inverting Eq. (6) giving
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C RT
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ii

¼
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We see that in order to eliminate reflections we
theoretically have to interconnect all the conduc-
tors i.e. we need 1

2N N þ 1ð Þ termination resistors.
Examples will be discussed later.

4. Measured signal

Now we assume that one end (z ¼ L) of the
transmission line is perfectly terminated. The other
end (z ¼ 0) is read by preamplifiers and is loaded
by ZP: If the current I0ðtÞ is induced on strip n; the
voltage and current measured by the amplifiers is
calculated from Eqs. (5) and (8) which gives
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Rin is the preamplifier input resistance. Ið0; tÞ is the
current at the line end which is different from
the current flowing through the amplifier in case
the strips are interconnected on the amplifier side.
The relative amplitudes of the voltages give the
crosstalk which we discuss next.

5. Crosstalk

The above solution allows us to write down the
explicit formula for the crosstalk from the signal
strip n to all other strips.

5.1. Homogeneous and inhomogeneous
transmission lines

In case the volume, where the electro-magnetic
waves propagate, has uniform dielectric proper-
ties, all the propagation velocities are the same and
we call the geometry a homogeneous transmission
line. It then holds that

#LL #CC ¼
1

v2
#11 #ZZC ¼ v #LL

An example is the geometry shown in Fig. 3. The
RPC geometry that we want to study (Fig. 9) is
however an inhomogeneous transmission line and
we will therefore find N different propagation
velocities causing signal dispersion even if the
transmission line is lossless.

5.2. Transmission line with small dispersion

If all the propagation velocities are the same or
if the transmission line is short, such that the
dispersion is very small, the solution from Eq. (10)
evaluates to
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Defining the Matrix #MM ¼ #ZZP
#ZZC

#ZZP þ #ZZC

	 
�1

the
crosstalk from conductor n to conductor m is given
by Vm=Vn ¼ Mmn=Mnn: If we adjust the preampli-
fier input resistance and interconnecting resistors
such that #ZZP ¼ #ZZC i.e. if we ideally terminate the
preamplifier side, the solution becomes

Vmeas tð Þ ¼
1

2
#ZZC 0; :; 0; I0 t�

z0
v

	 

; 0; :; 0

	 
T
The crosstalk from signal strip n to strip m is then
given by ZC

nm=Z
C
nn: We see that in order to have

small crosstalk, the off-diagonal elements in the
characteristic impedance matrix #ZZC should be
small compared to the diagonal elements. Termi-
nating the preamplifier side is however not the
optimum scenario in terms of collected charge and
crosstalk which will be shown next.

If we do not interconnect the strips on the
preamplifier side but just connect each strip
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to the preamplifier, it holds that #ZZP ¼
Diag Rin; Rin; y ; Rinð Þ where Rin is the preampli-
fier input resistance. In case the preamplifier input
resistance is Rin ¼ 0 we have #ZZP ¼ 0; VmeasðtÞ ¼ 0
and

Imeas tð Þ ¼ 0; 0; y ; I0 t�
z0
v

	 

; y ; 0

	 
T
i.e. we measure exactly the pulse induced on line n
and zero on all the other lines. The whole process
looks the following: if a current pulse is induced at
point z ¼ z0; half of it runs to the left and half of it
to the right. The pulse running to the right is
absorbed in the termination network (z ¼ L), the
pulse running to the left is totally negatively
reflected (z ¼ 0) and the preamplifiers measure
the difference i.e. the entire current signal. The
reflection again runs to the right where it is
absorbed. This way we measure the maximum
signal with minimum crosstalk. It is evident that
interconnecting the strips on the preamplifier side
i.e. introducing off-diagonal elements in the load
impedance matrix #ZZP; will always increase the
crosstalk.

Therefore we conclude for a terminated trans-
mission line with small dispersion that the
measured signals on all strips have the same shape
as the original induced signal, the crosstalk is
independent of the position of the induced signal
along the strip, the signal will be maximal and the
crosstalk minimal if we do not interconnect the
strips and the preamplifier input resistance Rin is
zero (or lowest possible).

5.3. Transmission line with significant dispersion

For a long, inhomogeneous transmission line
the individual pulses will disperse as they run
along the strips and the pulse-shapes will change.
The crosstalk will therefore in general increase
as a function of distance from the preamplifier
and will also depend on the shape of the induced
signal. If we integrate the current flowing through
the preamplifier (Eq. (11)) for sufficient time,
the N expressions

R
I t� z� z0ð Þ=vn
� �

dt evaluate
to the same value q ¼

R
I tð Þ dt since the pulses

are just time shifted but have the same shape.

Therefore we find
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where q is the total charge induced on strip n; and
the Qm are the charges measured on the N strips.
The charge fraction measured on the neighbouring
strips (‘crosstalk charge’) is given as before by
Qm=Qn ¼ Mmn=Mnn: This will be the observed
crosstalk for ‘slow’ readout electronics i.e. pre-
amplifiers with an integration time that is much
larger than the signal dispersion time. Fast
amplifiers will however sense the signal dispersion
and will therefore show more crosstalk. In case
Rin ¼ 0 and in case the strips are not intercon-
nected on the amplifier side the above expression
becomes

Q ¼ 0; :; 0; q; 0; :; 0ð ÞT: ð14Þ

The crosstalk charge is zero which means that all
the crosstalk signals are perfectly bipolar.

We conclude on the transmission line with
significant dispersion that the signal shapes change
as a function of distance from the preamplifier and
are only equal to the original induced signal if the
current is induced close to the preamplifier.
Therefore, the amplitude and shape of the cross-
talk signal also changes as a function of distance
from the amplifier. In general the crosstalk will
increase as a function of distance from the
amplifier. The crosstalk is lowest if the strips are
not interconnected and the amplifier input resis-
tance is as low as possible. The crosstalk is smaller
for slow electronics.

6. Examples

In this section we apply the formalism to an
actual RPC geometry. To study all aspects we
discuss a single strip RPC, a homogeneous
double strip transmission line, a double strip
RPC and finally a RPC with many strips and
guard strip.
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6.1. Single strip RPC

A single strip RPC is shown in Fig. 2. The
parameters calculated with Maxwell are

C ¼ 205 pF=m L ¼ 89:3 nH=m ) ZC ¼ 20:87O

v ¼ 2:34�108 m=s

The strip is terminated simply by putting a
termination resistor RT ¼ ZC at the strip end z ¼
L: The signal measured by an amplifier at z ¼ 0
with input resistance Rin is given by

Imeas tð Þ ¼
ZC

ZC þ Rin
I0 t�

z0
v

	 

so it has the same shape as the original induced
signal, independent of z0: In case the preamplifier
input impedance is Rin ¼ 0 the measured signal is
equal to the induced signal.

6.2. Homogeneous double strip line

To see the difference between an homogeneous
and inhomogeneous transmission line we study the
above RPC geometry with two strips and first omit
the Bakelite (Fig. 3). In that case the dielectric
properties are equal in the entire area where the
waves propagate and the propagation velocity will
be equal for all waves.

The Maxwell calculations give

#CC ¼
126 �6:4

�6:4 126

 !
pF=m

#LL ¼
88:4 4:47

4:47 88:4

 !
nH=m

from which we calculate with Eqs. (3) and (9)

#ZZC ¼
26:5 1:34

1:34 26:5

 !
O

#RRT ¼
27:8 522:7

522:7 27:8

 !
O v ¼ 3�108 m=s

The capacitance matrix #CC is defined such that the
negative off-diagonal element �Cij is the mutual
capacitance between conductor i and j; and the
sum of the ith column

P
j Cij is the capacitance of

conductor i to ground. Since the matrix #CC #LL is
already diagonal the matrix #TT is undefined and any
set of two orthonormal vectors will do for it. The
matrix #RRT contains the termination resistors
calculated from Eq. (9). Only if we interconnect
the strips on the termination side we avoid
reflections (Fig. 4). The other side of the strips
we finally want to read out with amplifiers of input
resistance Rin: We do not interconnect the strips
on this side and the load impedance matrix is a
diagonal matrix with Rin as diagonal elements. The
measured current for an induced current pulse
I0ðtÞ at z ¼ z0 of strip 1 is given by Eq. (11) and

Fig. 4. Termination network for a double strip RPC calculated

from Eq. (9). In order to perfectly terminate a multi-conductor

transmission line one has to interconnect all the lines.

Fig. 2. Cross-section through a RPC with a single signal strip.

The current signal is induced by the avalanche electrons moving

in the gas gap.

Fig. 3. Cross-section through a homogeneous transmission line

with two strips.
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evaluates to

I1meas tð Þ

I2meas tð Þ

 !
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¼
RinZ12

RinZ11 þ Z2
11 � Z2

12

ð15Þ

which is illustrated in Fig. 5. The measured signals
on both strips have exactly the same shape as the
original induced signal I0ðtÞ: The crosstalk is zero
if the preamplifier input resistance is zero. In that
case we measure exactly the induced current signal.
In order to keep the crosstalk small we want the
ratio Z12=Z11 to be small, so the off-diagonal
elements in the impedance matrix should be small
compared to the diagonal ones. In the limit of
Rin-N the crosstalk goes to Z12=Z11 and the
pulse-height goes to zero.

6.3. Double strip RPC

Adding the Bakelite to the geometry discussed
above (Fig. 6), Maxwell gives the characteristic
parameters

#CC ¼
216 �30

�30 216

 !
pF=cm

#LL ¼
88:4 4:47

4:47 88:4

 !
nH=m

from which we find with Eqs. (3) and (9)
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20:4 1:93

1:93 20:4

 !
O #TT ¼

1ffiffiffi
2

p 1 1

�1 1

 !

#RRT ¼
22:3 213:7

213:7 22:3

 !
O

#vv ¼
2:2 0

0 2:4

 !
�108 m=s

The Bakelite has increased the mutual strip–strip
capacitance from 6.4 to 30 pF/m but has left the
inductance unchanged (as expected). Therefore the
off-diagonal elements in the impedance matrix are
larger which will increase the crosstalk. The
propagation velocities of the two modes differ by
10%. For a signal I0ðtÞ at z ¼ z0 the preamplifiers

Fig. 5. (a) Pulse-height on both strips. The current is induced

on strip 1. The crosstalk pulse on strip 2 is multiplied by 10 for

illustration. (b) Fraction of crosstalk. We see that the pulse-

height decreases and the crosstalk increases for larger pre-

amplifier input resistance.
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measure a current of
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We see that the measured signal is a superposition
(according to the matrix #TT) of two pulses with the
same shape running with two different velocities.

Due to the dispersion the crosstalk will depend
on the pulse-shape I0ðtÞ and the amplifier re-
sponse. We assume a current pulse-shape of

I0 tð Þ ¼
E

V
e0veN0 1�

tve
d

	 

eavet 0otod=ve

where ve is the electron drift-velocity, a is the
Townsend coefficient, d is the thickness of the gas
gap, N0 is the number of primary electrons that are
uniformly distributed along the track and E is the
electric field in the gas gap if the signal strip is put
on a voltage V : For the following calculations we
assume ve=100 mm/ns, a=100 cm�1 and d=2mm.
The dispersion effect is illustrated in Fig. 7.

If the strips are short or the signal is induced
close to the preamplifier side we can neglect the
different propagation times and the crosstalk is
again given by Eq. (15). In that case the crosstalk

Fig. 7. Current pulses running along the two strips of the RPC

shown in Fig. 6. The labels show the distance of the induced

signal from the amplifier side. (a) Signal on the strip where the

current is induced. One can see that the two ‘modes’ are

dispersing after some distance. (b) Signal travelling on the

neighbouring strip. At the position where the signal is induced

the crosstalk signal is zero, as the modes are dispersing the

crosstalk increases.

Fig. 6. RPC with two strips. The dielectric properties are not

uniform in the area where the waves propagate which leads to

different propagation velocities.
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is independent of the peaking time and the
crosstalk signal has the same shape as the actual
induced signal.

For long strips the crosstalk will depend on the
amplifier response which we assume as

f tð Þ ¼
nt

tp

� �n

e
�nt
tp

where tp is the peaking time of the amplifier and n
is the number of integration stages. In the
following we will assume n ¼ 3: The measured
signal is given by the convolution of the current
signal with the delta response f ðtÞ: The result is
illustrated in Fig. 8. We find a very strong
dependence of the crosstalk on the amplifier
peaking time and the distance.

6.4. RPC with many strips and guard strip

Finally we investigate the crosstalk for an RPC
with many strips and an additional guard strip in

between the signal strips (Fig. 9). Due to the guard
strip the cross capacitance between two signal
strips reduces from 30 to 21.7 pF/m. The ideal
termination network calculated from Eq. (9) is
shown in Fig. 10. All other interconnections are
>25 kO and can be neglected. It is important that
the guard strip is not grounded but also included
in the termination network on the ‘far’ side if we
want to avoid any reflections. To illustrate the
effect Fig. 11 shows the case where the signal strips
are connected to ground with 25O, the strips are
not interconnected and the guard strip is grounded
on both sides (preamplifier and termination side).
As expected we find reflections. The significance of
the reflections and the question about how many
termination interconnections in Fig. 10 are there-
fore necessary has of course to be decided for the
actual application.

Connecting the strips to amplifiers with input
resistance Rin and grounding the guard strips
gives the load impendance matrix #ZZP ¼
Diag y;Rin; 0;Rin; 0;Rin yð Þ: The crosstalk versus
distance to the first and second neighbour is shown
in Fig. 12. The guard strip reduces the crosstalk by
about 40% for signals induced close to the
amplifier. Since the increase of crosstalk with
distance from the amplifier is however very similar
to the RPC with no guard strip, the crosstalk

Fig. 8. Crosstalk for different preamplifier input resistances

and peaking times as a function of distance from the amplifier

side (RPC shown in Fig. 6). For small distances the pulses do

not disperse and the crosstalk is given by Eq. (15), independent

of the amplifier speed. For fast amplifiers the crosstalk increases

strongly with the distance. In the limit of very long peaking

times the crosstalk would become independent of the position.

Fig. 9. RPC geometry with many strips and a guard strip to

reduce the strip–strip coupling.

Fig. 10. Ideal termination for the RPC with many strips

calculated from Eq. (9). All other interconnections are

>25kO and have negligible effect.
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numbers for large distances are very similar. The
mutual capacitance to the second neighbour is
very small, i.e. the crosstalk to the second
neighbour happens mainly through the first
neighbour. Fig. 13 shows the crosstalk signal for
two different distances of the induced signal from
the preamplifier side. As discussed before the
shape of the crosstalk signal changes as a function
of distance.

7. Frequency dependence and losses

For all the previous studies we neglected losses
and assumed that #LL and #CC are independent of
frequency. A frequency dependence of these two
matrices will introduce dispersion in addition to
the modal dispersion effect discussed earlier. For
conductors with small losses #LL will be frequency
independent. The matrix #CC however will be
affected by a frequency dependence of the permit-
tivity e of the surrounding medium. Most di-
electrics are reported to show no frequency and
loss effects up to the GHz range and since

preamplifiers used for RPCs rarely exceed a
bandwidth of 200MHz we should not have to
worry about these effects. Bakelite however is a
very bad material in that repect and shows losses

Fig. 12. Crosstalk to the first neighbour (a) and second

neighbour (b) for different peaking times and preamplifier

input resistances. The crosstalk to the second neighbour

happens mainly through the first neighbour and not through

direct coupling which can be seen by the fact that the values in

the second plot are approximately the square of the first one.

Fig. 11. Signal (solid line) and crosstalk (dashed line) for the

scenario where the RPC strips are terminated at 25O and the

intermediate strips are grounded on both sides. As expected we

find reflections.
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and frequency effects already far below 1GHz, so
we have to check our assumptions carefully.

Two kinds of losses can occur in the given
transmission lines. Losses in the conductors that
will be represented by the matrix #RR in Eq. (1) and
losses in the surrounding medium (e.g. the
Bakelite) which are represented by the matrix #GG

in Eq. (2). In general these losses will cause
frequency dependent dispersion and exponential
attenuation. A general formalism for lossy multi-
conductor transmission lines exists, in this report
we will however only discuss the losses for a
homogeneous single conductor transmission line
(Fig. 14) to estimate the effects. The losses
introduce a frequency dependence, so we have to
work in the frequency domain. Putting a sine-wave
with amplitude A0 on the conductor at z ¼ 0 we
find an attenuated and phase shifted sine-wave at
position z according to

A z; tð Þ ¼A0e
� aþibð Þzeot

aþ ib ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ ioLð Þ Gþ ioCð Þ

p
ð16Þ

where a is the attenuation factor that we are
interested in. For small losses i.e. R5oL and
G5oC we can expand the above expression and
find

aE
1

2

R

ZC
þ

1

2
GZC ZC ¼

ffiffiffiffi
L

C

r
ð17Þ

where ZC is the characteristic impedance in the
limit of high frequencies. The attenuation length
latt is then given by 1=a:

7.1. Losses due to R

The losses due to the resistance of the readout
electrodes are given by the DC resistance at low
frequencies and by the skin effect at high
frequencies. Assuming that all the current is

Fig. 13. Signal and crosstalk to the first neighbour strip for two

different distances of the induced current from the amplifier

(d=0m, 2m). The solid line shows the signal strip, the dotted

line the crosstalk. (a) Close to the amplifier the dispersion is

small and the crosstalk signal has the same shape as the original

one. (b) For larger distances the shape changes and the

crosstalk increases. The integral over the crosstalk signal does

not change as a function of the distance from the preamplifier

(Eq. (13)) and therefore the crosstalk signal will become more

bipolar for larger distances.

Fig. 14. Homogeneous transmission line with a single lossy

conductor and a lossy surrounding medium.
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flowing within one skin-depth of the conductor we
find the resistance numbers given in Fig. 15 for the
RPC geometry in Fig. 9 [3]. At a frequency of
1GHz the resistance of signal and guard strip
(copper) is about 0.2 and 10O/m. The character-
istic impedance of the RPC strips in Fig. 9 is about
20 and 120O so we find attenuation lengths of 200
and 24m for signal and guard strip which are
certainly negligible for RPCs of a few metres
length.

7.2. Losses due to G

The losses to the surrounding medium are due
to conduction losses and polarization losses.
Conduction losses due to free charge in the
dielectric medium are characterized by s; polariza-
tion losses due to bound charge in the dielectric are
characterized by an imaginary permittivity ei: They
can be included in the calculation by introducing a
complex permittivity

e ¼ er � i ei þ
s
o

h i
Calculating the complex capacitance (or capaci-
tance matrix) #CCI for this complex permittivity, the
capacitance matrix #CC and conductance matrix #GG

are given by

#CC ¼ Re #CCI

h i
#GG ¼ �oIm #CCI

h i
ð18Þ

so for a homogeneous single conductor transmis-
sion line like in Fig. 14 we have

G ¼ Gcond þ Gpol ¼
s
er
C þ o

ei
er
C ¼

s
er

1

vZC
þ o

ei
er
C

The effect from Gcond can best be estimated by
inserting it into Eq. (17) (R ¼ 0) which gives

aE
s

2erv

The Bakelite used for RPCs usually has a
conductivity of so10�8 S/m so for a line with a
permittivity of er ¼ e0 and v ¼ c we find an
attenuation length latt>5� 105m. Therefore the
effect from the conductivity s can be completely
neglected.

The effect from polarization loss Gpol can best
be estimated by rewriting the expression in
Eq. (16) as

aþ ib ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ ioLð Þ Gpol þ ioC

� �q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ ioLð Þ

ei
er
þ i

� �
oC

s

The ratio ei=er is often referred to as dissipation
factor or loss tangent tan de: As long as the
loss tangent is much smaller than unity the
polarization losses can be neglected. The loss
angle of Bakelite varies significantly with fre-
quency and is also different for different kinds of
Bakelite. In general the loss tangent is o0.001
below 1GHz for most dielectric materials, but as
discussed before one has to be careful with
Bakelite.

For all our previous studies we only assumed
er ¼ 10 and ei; s ¼ 0: A comparison of this model
with measurements on an actual RPC is shown in
Fig. 16. A voltage sine wave was connected to one
strip and the amplitude on the first and second
neighbour was measured. The measurement errors
were estimated by checking the sensitivity of the
measurement results to external variations (chan-
ging the orientation of the RPC, grounding, etc.).
The simulations where performed by feeding the
capacitance and inductance matrices (calculated

Fig. 15. Conductor resistance assuming all the current to flow

within one skin-depth for the RPC geometry in Fig. 9.
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with Maxwell) into PSPICE [6]. The agreement is
acceptable for frequencies fo200MHz, which is
the frequency range that is important for realistic
preamplifiers.

8. Conclusions

We studied signal propagation in RPCs by
analyzing the explicit time domain solution of a
lossless N-conductor transmission line. Measure-
ments on a RPC prototype show that this model is
applicable in the frequency range to which realistic
preamplifiers are sensitive. The RPC is completely
defined by the ‘per unit length’ capacitance and
inductance matrix that were calculated with
Maxwell [4]. The symbolic solution for an induced
current pulse I0ðtÞ at some position z ¼ z0 along
the strip is then completely defined and the
reflected and measured pulses at the line ends
can be calculated with a very elegant matrix
formalism. For this report this was done with
Mathematica [5].

The formalism allows some general conclusions.

* To avoid reflections on one side of the RPC the
strips theoretically have to be interconnected by
1
2N N þ 1ð Þ resistors. The realistic number of
interconnections has to be decided depending
on specifications.

* Since the RPC is an inhomogeneous transmis-
sion line the signals propagate as a linear
superposition of pulses that are equal to the
original induced signal and travel with N
different velocities. Therefore we find signal
dispersion and dependence of the crosstalk
amplitude and shape on preamplifier speed,
signal shape and position of the induced signal
along the strip.

* The crosstalk is lowest if the preamplifier input
resistance is as low as possible, the strips are not
interconnected on the preamplifier side and the
preamplifiers are as slow as possible. It is
therefore important to chose the slowest possi-
ble electronics that is still compatible with
timing requirements.

Specific to the RPC geometry shown in Fig. 9
we can conclude:

* For a strip length of 2m the crosstalk to the
first neighbour ranges from 3.3% to 13.7% for
a preamplifier peaking of 3 ns and from 3.3% to
7.4% for a peaking time of 10 ns (Rin=25O).

Fig. 16. Measurement of the crosstalk for an RPC with the

geometry similar to Fig. 9. A voltage sine wave was put on one

strip and the amplitude on the first (a) and second (b) neighbour

strip was measured. The Bakelite was assumed to have e ¼ 10;
losses were neglected. The solid line shows the simulation, the

points show the measurement. For frequencies o200MHz the

agreement is acceptable.
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* Since the direct coupling to the second neigh-
bour is very small the crosstalk to the second
neighbour happens mainly through the first one
and is therefore approximately given by the
square of the above numbers. The result is 0.15–
1.87% for 3 ns peaking time and 0.15–0.76%
for 10 ns peaking time.

* Theoretical considerations show that losses due
to conductor resistance, conductivity s and
imaginary permittivity ei of the Bakelite should
be small within the bandwidth of applicable
preamplifiers i.e. o200MHz.

* Measurements on a prototype confirm that in
this frequency range the losses can indeed be
neglected. In general however Bakelite is a
material that is not very well defined and
therefore the losses have to be watched care-
fully.
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