







#### **Keeling & Walker Ltd.:**

- Based in the United Kingdom
- A part of the Amalgamated Metal Corporation
- over 100 years of manufacturing experience
- Leading manufacturer of Tin Oxides and Advanced Pigments
- ISO 9001, 14001 and 50001 certified



### **K&W Products:**

dispersions

| Tin Oxide                            | Doped Tin Oxides             | <b>Advanced Pigments</b>              |
|--------------------------------------|------------------------------|---------------------------------------|
| Particle Size Range<br>3 nm – 500 μm | Antimony Doped Tin<br>Oxides | Yellow and Blue<br>Indium Tin Oxide   |
| High Purity<br>99.9 % - 99.999%      | Fluorine doped Tin<br>Oxides | Doped Tungsten<br>Oxide               |
| AlphaStannic Acid                    | Zinc Tin Oxide               | Aqueous / Solvent<br>Nano dispersions |
| Metastannic Acid                     | Calcium Tin Oxide            |                                       |
| Aqueous Nano                         | Aqueous Nano                 |                                       |

dispersions

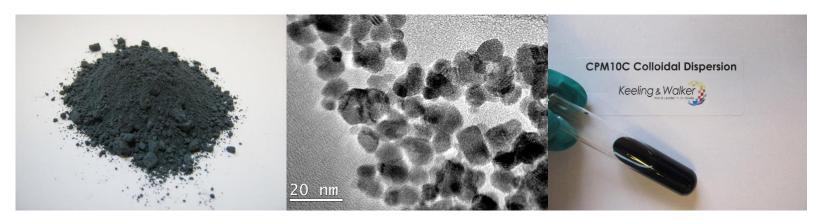


### **Antistatic / Conductive Coatings with StanoStat**

#### **Substrates:**

- Glass
- Polymers
- Films
- Ink & Coatings
- Electrodes

## **Advantages:**


- low colour / not black
- Permanent Effect
- independent of environmental
- conditions
- non toxic
- easy to disperse
- thermally stable
- transparent applications possible

## **Disadvantages:**

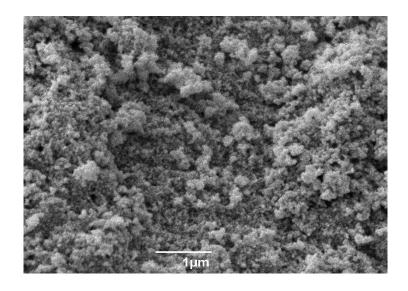
- high loadings ev. necessary



#### **Antimony Tin Oxide (StanoStat CPM range):**



- SnO2 / Sb2O5 mixed metal oxide with nano-sized primary particles
- Comprises aggregates of spherical primary particles
- Primary particle size (by TEM) 10 20 nm
- Easily milled in a variety of aqueous and organic media for production of nano-particulate dispersions and pastes


#### **Applications:**

Antistatic and Infrared Light Absorbing Polymers, Films, Coatings and Inks



#### **Indium Tin Oxide (ITO)**





#### **Yellow ITO**

Composition 90% In2O3 / 10% SnO2

- Surface area > 50 m2/g (by BET method)
- Resistivity < 10 ohm.cm

Blue ITO
Partially reduced ITO
Surface area >35 m2/g
Resistivity < 0.2 ohm.cm



## Fluoride Tin Oxide (FTO)



#### **Colour Data:**

| Grade | L    | а     | b    |
|-------|------|-------|------|
| FTO   | 91.4 | -1.37 | 2.32 |

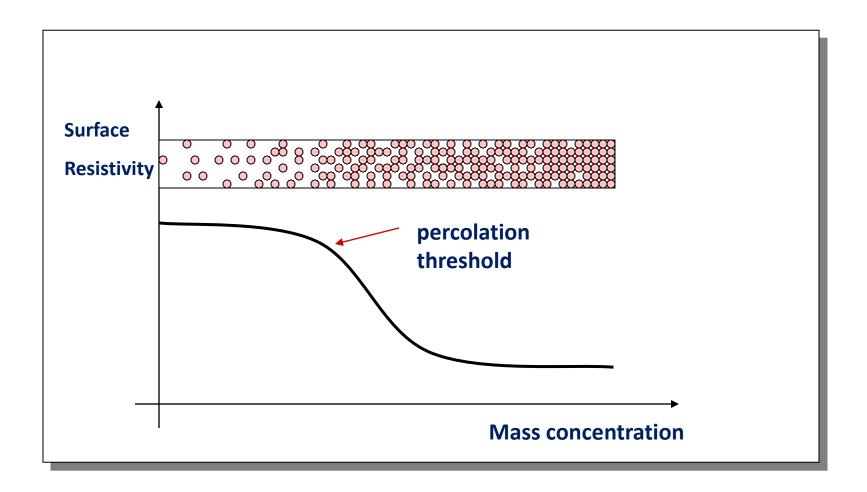
## FTO powder:

- Light coloured
- good dispersability in coatings
- nano sized dispersions possible



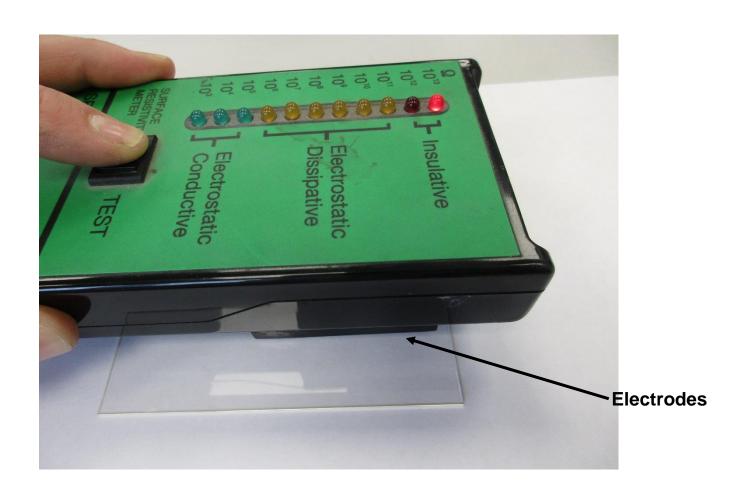
# **Doped Tin Oxides: Chemical & Physical Properties**

| Туре                   | ATO (CPM)           | ATO (CP)       | FTO                 | ITO Blue        | ITO Yellow     |
|------------------------|---------------------|----------------|---------------------|-----------------|----------------|
| Dopand                 | Sb                  | Sb             | F                   | In              | In             |
| Dopand<br>Level        | 0.5 – 15.0%         | 0.3 – 20 %     | < 2 %               | 90 %            | 90%            |
| Colour                 | Grey – blue         | Light grey     | Pale Grey-<br>green | Dark-blue       | Yellow         |
| Thermal<br>Stability   | > 1000°C            | > 1000°C       | < 500°C             | 800°C           | 800°C          |
| Conductivity           | 0.2 – 100<br>ohm.cm | < 20<br>ohm.cm | < 5 ohm.cm          | < 0.2<br>ohm.cm | < 10<br>ohm.cm |
| Transparent dispersion | yes                 | no             | no                  | yes             | yes            |




## **StanoStat CPM Dispersions for Antistatic Coatings:**

|                          | ATO<br>CPM10C           | ATO<br>CPM10C | Yellow ITO | Blue ITO    | CPM10M               |
|--------------------------|-------------------------|---------------|------------|-------------|----------------------|
| Solvent                  | water                   | Exxsol D140   | Water      | Plasticizer | no                   |
| Additive                 | None or<br>Aminoalcohol | Dispersant    | Dispersant | Dispersant  | Surface<br>treated   |
| рН                       | 7-9                     | n.a.          | n.a.       | n.a.        | n.a.                 |
| Primary Crystallite size | 5 - 10                  | 5 - 10        | 10         | 10 - 50     | 5 - 10               |
| Solids Concentration     | 20 – 25%                | 20 -25%       | 20 – 25 %  | 20 %        | 100 %                |
|                          |                         |               |            |             | Redispersible powder |




#### **Percolation Effect**





## **Measuring Antistatic properties with Surface Resistivity Meter**





#### **CPM10C Dispersion coating on Glass**





# Properties of binderfree annealed CPM10 films on Glass

| Substrate | Coating     | Coating | Coating thickness | Annealing | Annealing   | Sheet resistance | Transmittance |
|-----------|-------------|---------|-------------------|-----------|-------------|------------------|---------------|
| type      | type        | method  | nm                | Туре      | Temperature | Ohm/sq           | % at 550 nm   |
| LCD Glass | ATO - CPM10 | Dip     | 400               | Thermal   | 100 C       | 240k             | 92            |
| LCD Glass | ATO - CPM10 | Dip     | 400               | Thermal   | 200 C       | 90k              | 92            |
| LCD Glass | ATO - CPM10 | Dip     | 400               | Thermal   | 300 C       | 9k               | 92            |
| LCD Glass | ATO - CPM10 | Dip     | 400               | Thermal   | 400 C       | 1k               | 92            |
| LCD Glass | ATO - CPM10 | Dip     | 400               | Thermal   | 500 C       | 300              | 91            |
| LCD Glass | ATO - CPM10 | Dip     | 400               | Thermal   | 600 C       | 190              | 92            |
| LCD Glass | ATO - CPM10 | Dip     | 400               | Thermal   | 700 C       | 170              | 92            |
| LCD Glass | ATO - CPM10 | Dip     | 600               | Thermal   | 700 C       | 60               | 80 - 85       |



# Resistivity of ATO coatings on films / $\Omega$

Substrate: PVC clear film

Binder System: aqueous PU Dispersion (Witcobond)

Additive: CPM10C colloidal dispersion in water

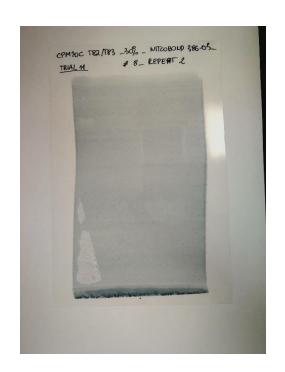
Preparation: Draw Down with Rod #8

Wet Film Thickness: 13 µm

Drying overnight at RT

| % CPM10C     | % CPM10C (solids |  |
|--------------|------------------|--|
| (solids in   | per solids in    |  |
| formulation) | WITCOBOND)       |  |
| 5            | 2.0              |  |
| 10           | 4.0              |  |
| 15           | 5.7              |  |
| 20           | 7.5              |  |
| 30           | 11.3             |  |


| % CPM10C (solids in formulation) | Surface resistance (Ohm.square) |
|----------------------------------|---------------------------------|
| Clear PVC                        | 10 <sup>12</sup>                |
| PVC + WITCOBOND 386-03           | 10 <sup>12</sup>                |
| 5                                | 10 <sup>12</sup>                |
| 10                               | 10 <sup>12</sup>                |
| 15                               | 10 <sup>11</sup>                |
| 20                               | 108                             |
| 30                               | 10 <sup>6</sup>                 |




# Resistivity of ATO films / $\Omega$

| ATO loading [%] | Surface resistance [Ohm/sq] |
|-----------------|-----------------------------|
|                 |                             |
| 15              | 1E11                        |
| 20              | 1E8                         |
| 30              | 1E6                         |







Blank Film Film coated; 20% CPM Film coated : 30% CPM



### Performance in an Solvent borne Alkyd resin system

Formulation: Rhenaldehyd MF 4028 112 Parts

60% in Solventnaphta

Bentone 38, 10 % in SN

Disperbyk

Solventnaphta 145 /200

Combinationdrier 173

Ascinin R

StanoStat CP

2,2 Parts

0,3 Parts

4,4 Parts

1,1 Parts

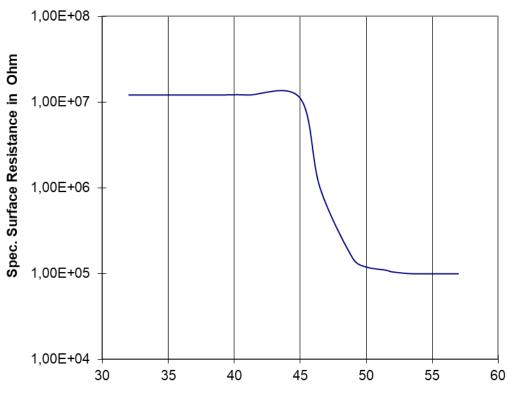
variable

Processing: 1 h Scandex mixer with Glass beads

alternative:

Dispermat, 2 min. 15.000 U/min.,

Addition of 0,1 parts Airex 980 recommended


Coating Thickness: 100 µm wet

Performance: Drying Time, after 24 h dustfree



## Performance in an Solvent borne Alkyd resin system

#### Percolationcurve:



Concentration of StanoStat CP in %



## Performance in an Solvent borne 2K Polyurethane system

Formulation: Component A:

Joncryl 922 106 Parts
Byk 320 1 Part
Butylacetat 12,5 Part
StanoStat CP variable

Joncryl 922 94,4 Parts
Butylacetat 86,6 Parts
DBTL 0,12 Parts
Palinol P 5 Parts

**Component B:** 

Tolonat HDT 81,8 Parts



## Performance in an Solvent borne 2K Polyurethane system

Processing: mixing in a Dispermat,

Coating Thickness: 100 µm wet

Performance:

| 10% StanoStat CP on resin solids | 1,2 E 12 Ohm |
|----------------------------------|--------------|
| 20% StanoStat CP on resin solids | 6,2 E 11 Ohm |
| 30% StanoStat CP on resin solids | 1,8 E 11 Ohm |
| 40% StanoStat CP on resin solids | 1,4 E 7 Ohm  |
| 50% StanoStat CP on resin solids | 3,0 E 6 Ohm  |
| 60% StanoStat CP on resin solids | 1,7 E 6 Ohm  |
|                                  |              |

0 – Blank with TiO2 approx.1:1 on resin solids

1,1 E 11 Ohm



#### **Summary:**

Keeling & Walker is a major manufacturer of doped Tin Oxides

Key Applications for Doped Tin Oxides are:

Heat Absorbing Films
Antistatic Coatings
Laser Structuring / Marking Additives

**Product Security Additives** 

Tailor made products is the strength of Keeling & Walker.

# Thank You

Keeling & Walker Limited Whieldon Road, Stoke-on-Trent, ST4 4JA, United Kingdom

Tel: +44 (0) 1782 744136

Fax: +44 (0) 1782 744126

Email: sales@keelingwalker.co.uk

Website: www.keelingwalker.com



