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Induced signals in resistive plate chambers
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Abstract

We derive theorems for induced signals on electrodes embedded in a medium with a position and frequency-

dependent permittivity eð~xx; sÞ and conductivity sð~xx; sÞ that are connected with arbitrary discrete elements. The problem

is treated using the quasi-static approximation of Maxwell’s equations for weakly conducting media. The induced

signals can be derived by time-dependent weighting fields and potentials and the result is the same as the one given in

Gatti et al. (Nucl. Instr. and Meth. 193 (1982) 651). We also show how these time-dependent weighting fields can be

derived from electrostatic solutions. Finally, we will apply the results to Resistive Plate Chambers where we discuss the

effects of the resistive plates and thin resistive layers on the signals induced on plane electrodes and strip electrodes.

r 2002 Published by Elsevier Science B.V.
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1. Introduction

Most particle detectors can be approximated by
assuming perfectly conducting electrodes sur-
rounded by insulating materials. In that case all
the electric fields are instantaneous and the current
induced on a grounded electrode by a charge Q

moving along a trajectory ~xxðtÞ in the detector can
be calculated by Ramo’s theorem [1,2]:

IðtÞ ¼ Q~EE ð~xxðtÞÞ ’~xxðtÞ ð1Þ

where ~EE ð~xxÞ is the electric field in the detector if the
charge is removed, the electrode in question is put
to unit voltage and all other electrodes are
grounded. In a detector with resistive elements

the electric fields will show a time dependence and
the above statement will not hold. In this report,
we will derive a similar theorem for detectors
containing resistive elements, i.e. we will answer
the question: what are the voltages induced by a
time varying charge density rð~xx; tÞ on electrodes
embedded in a medium with arbitrary conductivity
sð~xx; sÞ and permittivity eð~xx; sÞ that are connected
with arbitrary reactive elements (Fig. 1).

If we answer the question for electrodes
embedded in a general medium without discrete
elements, as shown in Fig. 4, we have already
solved the problem for connected electrodes since
we can assume the discrete elements to be
contained in the eð~xx; sÞ and sð~xx; sÞ:

Finally, the results will be applied to signals in
Resistive Plate Chambers.E-mail address: werner.riegler@cern.ch (W. Riegler).
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2. Quasi-static approximation of Maxwell’s

equations

To include the frequency dependence of e and s
we work in the Laplace domain, i.e. we write

L½~EE ð~xx; tÞ� ¼ %~EE ð~xx; sÞ;

L
@~EE ð~xx; tÞ

@t

" #
¼ s %~EE ð~xx; sÞ; etc: ð2Þ

where we have assumed that at t ¼ 0 all fields and
charges are zero. Maxwell’s equations for a linear
isotropic medium with permittivity eð~xx; sÞ and
conductivity sð~xx; sÞ then read as

~rr %~DD ¼ %r %~DD ¼ e %~EE ; ~rr %~BB ¼ 0 %~BB ¼ m %~HH ð3Þ

~rr � %~EE ¼ �s %~BB; ~rr � %~HH ¼ %~jj e þ s %~EE þ s %~DD ð4Þ

where %~jje is an ‘externally impressed’ current that is
connected with an ‘external’ charge density by
~rr%~jj e ¼ �s %re: Assuming weak conductivity s we
can set

~rr � %~EE ¼ �s %~BB ¼ 0 ) %~EE ¼ �~rr %F ð5Þ

and by taking the divergence of the second
equation in Eq. (4) we find

~rr½sð~xx; sÞ~rr� %Fð~xx; sÞ þ ~rr½eð~xx; sÞ~rr�s %Fð~xx; sÞ

¼ � s %reð~xx; sÞ ð6Þ

which we can write as

~rr½Eð~xx; sÞ~rr� %Fð~xx; sÞ ¼ � %reð~xx; sÞ with

Eð~xx; sÞ ¼ eð~xx; sÞ þ
1

s
sð~xx; sÞ: ð7Þ

This equation has the same form as the Poisson
equation for electrostatic problems [9,10]. Let us
assume that we have a general charge density with
a time dependence according to

reð~xx; tÞ ¼ rð~xxÞdðtÞ - %reð~xx; sÞ ¼ rð~xxÞ: ð8Þ

To find the corresponding time-dependent poten-
tial, the equation to solve is

~rr½Eð~xx; sÞ~rr� %Fð~xx; sÞ ¼ �rð~xxÞ: ð9Þ

From this we can conclude the following state-
ment:

If we know the electrostatic potential for the
charge density rð~xxÞ in a medium with given eð~xxÞ
we obtain the time-dependent potential for a
charge density rð~xxÞdðtÞ in a medium with
conductivity sð~xx; sÞ and permittivity eð~xx; sÞ by
replacing e with eþ s=s and performing the
inverse Laplace transform.

Since the Green’s function for the electrodynamic
problem is the potential for the source dð~xxÞdðtÞ the
same conclusion applies:

If we know the Green’s function for a medium
with given eð~xxÞ we obtain the time-dependent
Green’s function for a medium with conductiv-
ity sð~xx; sÞ and permittivity eð~xx; sÞ by replacing e
with eþ s=s and performing the inverse
Laplace transform.

In the next section, we will show two simple
examples.

2.1. Point charge in infinite space

The Green’s function for a homogeneous
medium characterized by a constant permittivity
e is given by

%Gð~rrÞ ¼
1

4pej~rrj
: ð10Þ

(x,s)ε
(x,s)σ ρ (x,t)

V1(t)

V3(t)

V2(t)

Z1(s)

Z12(s)

Z13(s)

Z3(s)

Z23(s)

Z2(s)

Fig. 1. Electrodes embedded in a medium with conductivity

sð~xx; sÞ and eð~xx; sÞ and connected with an arbitrary reactive

network. The time varying charge density rð~xx; tÞ induces

voltages on the electrodes.
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Replacing e by eþ s=s and performing the inverse
Laplace transform we find the Green’s function for
a medium with constant conductivity s and
permittivity e as

Gð~rr; tÞ ¼
1

4pej~rrj
dðtÞ �

1

t
e�t=t

� �
; t ¼

e
s
: ð11Þ

E.g. putting at time t ¼ 0 a charge density rð~rrÞ into
the medium i.e. reð~rr; tÞ ¼ rð~rrÞYðtÞ the time-depen-
dent potential is given by

Fð~rr; tÞ ¼
Z

V

Z t

0

Gð~rr �~rr0; t � t0Þrð~rr0ÞYðt0Þ dt0 d3r0

¼
e�t=t

4pe

Z
V

rð~rr0Þ
j~rr �~rr0j

d3r0: ð12Þ

The potential is equal to the electrostatic one, but
‘destroyed’ with the time constant t ¼ e=s:

2.2. Point charge in an infinite half-space

Let us assume two infinite half-spaces with
different constant s; e and a point charge Q at the
boundary (Fig. 2). The electrostatic solution ðs ¼
0Þ is given by [3]

%Fð~rrÞ ¼
Q

4p
2

ðe1 þ e2Þ
1

j~rrj
: ð13Þ

This has the same form as the above solution (10),
so the potential for a point charge Q created at
t ¼ 0 we have

Fð~rr; tÞ ¼
2Q

4pðe1 þ e2Þj~rrj
e�t=t; t ¼

e1 þ e2
s1 þ s2

: ð14Þ

If we set e1 ¼ e0; s1 ¼ 0; e2 ¼ ere0 and s2 ¼ s; the
geometry is similar to a charge sitting on the

resistive plate in a Resistive Plate Chamber (RPC).
With typical numbers of 1=s ¼ 1010 O cm and
er ¼ 5 we find a time constant of t ¼ 4:4 ms; so the
charge is ‘removed’ very slowly compared to the
RPC signal duration of a few nanoseconds.

3. Generalized Green’s theorem and impedance

matrix

In order to apply the quasi-static approximation
to the problem of induced signals we need a
generalization of Green’s theorem and the capaci-
tance matrix. If we have N insulated electrodes on
potentials Vi (Fig. 3a), the charges on the electro-
des are given by

Qi ¼
X

j

cijVj ð15Þ

Q

 ε1,  σ1

ε2,  σ2

Fig. 2. Point charge on the boundary between two infinite half-

spaces of constant s and e:

V1 

Q1

Q3

Q2

V3

V2

ε (x,s)

(x,s)σ

2
1

3
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3

V1(t)

V2(t)

V3(t)

1I  (t)
ext

I  (t)
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I  (t)
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Fig. 3. (a) The voltages Vi and charges Qi on insulated

electrodes are connected through the capacitance matrix cij :
(b) The voltages Vi and currents Iexti flowing onto electrodes

embedded in a general conducting medium are connected by the

impedance matrix ZijðsÞ:
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where cij is the capacitance matrix. This is derived
from Green’s second theorem [3] which reads asZ

V

ðcDf� fDcÞ dV

¼
Z

S

ðc~rrf� f~rrcÞ d~AA: ð16Þ

Now we derive a similar relation for electrodes in a
medium with eð~xx; sÞ and sð~xx; sÞ (Fig. 3b). We want
to know the voltages ViðtÞ on the electrodes for
given external currents I exti ðtÞ impressed on the
electrodes. Since there are no charges in between
the electrodes the equation to solve is

~rr½Eð~xx; sÞ~rr� %Fð~xx; sÞ ¼ 0; %ViðsÞ ¼ %Fð~xx; sÞj~xx¼Si
;

ViðtÞ ¼ L�1½ %ViðsÞ� ð17Þ

where Si is the surface of electrode i and E ¼
eþ s=s as defined before. The charges on the
electrode surfaces and the currents flowing from
surfaces into the medium are given by

%QiðsÞ ¼
Z

Si

eð~xx; sÞ
@ %Fð~xx; sÞ

@~nn
d~AA;

%IiðsÞ ¼
Z

Si

sð~xx; sÞ
@ %Fð~xx; sÞ

@~nn
d~AA: ð18Þ

If the electrodes are not connected to an ‘external’
current source, the rate of change of the charge on
the surface is only due to the current leaving
through the surface, so the two are connected by

d

dt
QiðtÞ þ IiðtÞ ¼ 0

- s %QiðsÞ þ %IiðsÞ ¼ 0 ð19Þ

where we have assumed that at t ¼ 0 the charges
on the electrode surfaces are zero. If the electrodes
are connected to external current sources the
relation is

d

dt
QiðtÞ þ IiðtÞ ¼ I exti ðtÞ

- s %QiðsÞ þ %IiðsÞ ¼ %Iexti ðtÞ ð20Þ

We use a modified version of Green’s theorem [4]
given byZ

V

½cð~xxÞ~rr½f ð~xxÞ~rr�fðxÞ � fð~xxÞ~rr½f ð~xxÞ~rr�cð~xxÞ� d3x

¼
Z

S

cð~xxÞf ð~xxÞ
@fð~xxÞ
@~nn

� fð~xxÞf ð~xxÞ
@cð~xxÞ
@~nn

� �
d~AA ð21Þ

which holds for arbitrary functions c; f ;f: The
surface S encloses the volume V : We replace f
with %Fð~xx; sÞ; f ð~xxÞ with Eð~xx; sÞ and can still chose c
arbitrarily. We chose c to be the potential function
of the geometry in Fig. 3b with still arbitrary
boundary conditions viðtÞ; i.e.

~rr½Eð~xx; sÞ~rr� %cð~xx; sÞ ¼ 0; %viðsÞ ¼ %cð~xx; sÞj~xx¼Si
;

viðtÞ ¼ L�1½%viðsÞ�: ð22Þ

Now we insert %F; %c and E in Green’s theorem, the
volume V in between the electrodes is enclosed by
the electrode surfaces S ¼

P
Si and a surface at

infinity where all the fields are zero. The ‘volume’
terms in the first line of Eq. (21) are zero and we
are left with the surface terms of the second line, so
we getX

i

%viðsÞ %QiðsÞ þ
1

s
%IiðsÞ

� �

¼
X

i

%ViðsÞ %qiðsÞ þ
1

s
%iiðsÞ

� �
: ð23Þ

%qi and %ii are defined by Eq. (18) where %F is replaced
by %c: Multiplying both sides with s and using
Eq. (20) we haveX

i

%viðsÞ %I ext
i ðsÞ ¼

X
i

%ViðsÞ%i exti ðsÞ ð24Þ

which is called the ‘reciprocity theorem’. If we now
chose %viðsÞ such that we put a constant voltage %v11
on electrode 1 (i.e. a voltage delta pulse %v11dðtÞ in
the time domain), we have an ‘external’ current %i ext1

on this electrode, voltages %v1iðsÞ on the other
electrodes and no ‘external’ currents on the other
electrodes and we find

%V1ðsÞ ¼
1

%i ext1 ðsÞ

X
j

%v1jðsÞ %I ext
j ðsÞ: ð25Þ

The same we can do with electrode 2, etc., and we
therefore find the relation

%ViðsÞ ¼
X

j

ZijðsÞ %I ext
j ðsÞ; ZijðsÞ ¼

%vijðsÞ
%i exti ðsÞ

ð26Þ

where %i exti ðsÞ is the current flowing onto electrode i

when we put a constant voltage %vii on electrode i

and %vijðsÞ; jai are the corresponding voltages on
the other electrodes. The matrix Zij is called the
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characteristic impedance matrix of the electrode
system. We will use it later to find the connection
between induced voltages and currents.

4. Induced signals in weakly conducting

environment

Next we want to find the voltages and currents
induced on the electrodes by a time varying charge
density in between the electrodes as shown in
Fig. 4. The volume between the electrodes has a
position and frequency-dependent permittivity
and conductivity. Using the quasi-static approx-
imation we look for the solution of the following

problem:

~rr½Eð~xx; sÞ~rr� %Fð~xx; sÞ ¼ � %rð~xx; sÞ;
%ViðsÞ ¼ %Fð~xx; sÞj~xx¼Si

ð27Þ

where Si is the surface of electrode i and Vi is the
voltage of electrode i: As before E ¼ eþ s=s:

The problem has the formal solution:

%Fð~xx; sÞ ¼
Z

V

%Gð~xx; ~xx0; sÞ %rð~xx0; sÞ d3x0

~rrðEð~xx; sÞ~rrÞ %Gð~xx; ~xx0; sÞ ¼ �d3ð~xx � ~xx0Þ ð28Þ

where V is the entire volume between the
electrodes. As in the last section we use Green’s
theorem (21), replace f with %Fð~xx; sÞ; f ð~xxÞ with
Eð~xx; sÞ and can still chose c arbitrarily. If we again
chose c to be the potential function of the
geometry in Fig. 4 where the charge density is
removed i.e.

~rrðEð~xx; sÞ~rrÞ %cV ð~xx; sÞ ¼ 0;

%viðsÞ ¼ %cV ð~xx; sÞj~xx¼Si
ð29Þ

with still arbitrary boundary conditions %viðsÞ we
findZ

V

%cV ð~xx0; sÞ %rð~xx0; sÞ d3x0

¼
X

i

%viðsÞ %QiðsÞ þ
1

s
%IiðsÞ

� �

�
X

i

%ViðsÞ %qiðsÞ þ
1

s
%iiðsÞ

� �
ð30Þ

Since the electrodes in Fig. 4a are not connected to
any external source we have %I ext

i ¼ 0: Multiplying
both sides with s and using Eqs. (19) and (20) we
findZ

V

s %cV ð~xx0; sÞ %reð~xx0; sÞ d3x0 ¼
X

i

%ViðsÞ%i exti : ð31Þ

If we chose the boundary conditions for %c such
that %i exti ¼ 0 for ia1 and %i ext1 ¼ q0 ¼ const., which
means in the time domain that we define c by
putting a current delta pulse q0dðtÞ on electrode 1
while leaving all other electrodes unconnected, we
have

%V1ðsÞ ¼
1

q0

Z
V

s %cV ð~xx0; sÞ %reð~xx0; sÞ d3x0 ð32Þ

ρ(x,t)
ε(x,s)

(x,s)σ

1
2

3

V1(t)

V2(t)

V3(t)

ρ(x,t)
ε(x,s)

(x,s)σ

I  (t)G
1

2
1

3

I  (t)G

I  (t)G

2

3 

(a)

(b)

Fig. 4. (a) The time-dependent charge density induces voltages

on the electrodes which are embedded in a general medium. (b)

In case the electrodes are grounded the voltages are always zero

and the charge distribution induces currents that are flowing

between the electrodes and ground.
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and in the time domain we get

V1ðtÞ ¼
1

q0

Z t

0

Z
V

cV ð~xx
0; t � t0Þ

@reð~xx
0; t0Þ

@t0
d3x0 dt0:

ð33Þ

This is the desired theorem:

The voltage induced by a time-dependent
charge distribution on an electrode embedded
in a medium of permittivity eð~xx; sÞ and con-
ductivity sð~xx; sÞ can be calculated the following
way: we remove the charge, apply a delta
current q0dðtÞ on the electrode in question
which defines a time-dependent potential
cV ð~xx; tÞ in the space between the electrodes
from which V ðtÞ can be calculated with
Eq. (33). We call cV the ‘weighting potential’.

If s is zero, i.e. the electrodes are insulated, the
fields are instantaneous, the time dependence of c
becomes cð~xx; tÞ ¼ cð~xxÞYðtÞ and the above theorem
reads as

V1ðtÞ ¼
1

q0

Z
V

cV ð~xx
0Þreð~xx

0Þ d3x0: ð34Þ

If the electrodes are grounded (Fig. 4b), the
voltages ViðtÞ are zero and the time-dependent
charge density induces currents I ext

i ðtÞ ¼ IG
i ðtÞ

flowing between the electrodes an ground. We
therefore have the relation

d

dt
QiðtÞ þ I iðtÞ ¼ IG

i ðtÞ

- s %QiðsÞ þ %IiðsÞ ¼ %I G
i ðsÞ ð35Þ

and Eq. (30) becomesZ
V

s %cI ð~xx0; sÞ %reð~xx0; sÞ d3x0 ¼
X

i

%viðsÞ %I G
i ðsÞ: ð36Þ

We see that defining c by putting the voltage pulse
v1ðtÞ ¼ v0dðtÞ-%v1ðsÞ ¼ v0 on electrode 1 while
keeping all others grounded we find the induced
current on the electrode by the relation

IG
1 ðtÞ ¼

1

v0

Z t

0

Z
V

cI ð~xx
0; t � t0Þ

@reð~xx
0; t0Þ

@t0
d3x0 dt0 ð37Þ

which is the second desired theorem:

The current induced by a time-dependent
charge distribution on a grounded electrode

embedded in a medium of permittivity eð~xx; sÞ
and conductivity sð~xx; sÞ can be calculated the
following way: we remove the charge, apply a
delta voltage pulse v0dðtÞ on the electrode in
question which defines a time-dependent poten-
tial cI ðx; tÞ in the space between the electrodes
from which IGðtÞ can be calculated with
Eq. (37).

Since the above theorems hold for general sð~xx; sÞ
and eð~xx; sÞ they are also valid if they are connected
with arbitrary networks as shown in Fig. 1 since
we can imagine the Yij ¼ 1=Zij to be contained in s
and e:

If s is zero the time dependence of c becomes
cð~xx; tÞ ¼ cð~xxÞdðtÞ and the theorem reads as

IG
1 ðtÞ ¼

1

v0

Z
V

cI ð~xx
0Þ
@reðx

0; tÞ
@t

d3x0: ð38Þ

With ~rrje ¼ �@re=@t we find

IG
1 ðtÞ ¼

1

v0

Z
V

~EEI ð~xx0Þ~jjeð~xx; tÞ d
3x0;

~EEI ð~xxÞ ¼ �~rrcI ð~xxÞ ð39Þ

which recuperates Ramo’s theorem.

4.1. Signals induced by a moving point charge

The charge density of a point charge Q created
at t ¼ 0 and moving along a trajectory ~xxðtÞ is given
by

reð~xx; tÞ ¼ QYðtÞd3½~xx � ~xx0ðtÞ�: ð40Þ

Inserting this in the above formula we find

V1ðtÞ ¼
Q

q0
cV ð~xx0ðtÞ; tÞ

þ
Q

q0

Z t

0

~EEV ð~xx0ðt0Þ; t � t0Þ ’~xx0ðt0Þ dt0

~EEV ð~xx; tÞ ¼ �~rrcV ð~xx; tÞ: ð41Þ

The first term is due to the creation of the charge
and the second term is due to the movement of the
charge. In an detector the charge is always created
through ionization, i.e. an electron and an ion are
produced at the same place from where they move
in opposite directions along trajectories ~xx1ðtÞ and
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~xx2ðtÞ: In that case the charge density is given by

reð~xx; tÞ ¼ YðtÞ½Qd3ð~xx � ~xx1ðtÞÞ � Qd3ð~xx � ~xx2ðtÞÞ�;

~xx1ð0Þ ¼ ~xx2ð0Þ: ð42Þ

The induced voltage then becomes

V1ðtÞ ¼
Q

q0

Z t

0

~EEV ð~xx1ðt0Þ; t � t0Þ ’~xx1ðt0Þ dt0

þ
Q

q0

Z t

0

~EEV ð~xx2ðt0Þ; t � t0Þ ’~xx2ðt0Þ dt0 ð43Þ

so the term due to the creation of the charge
cancels and the signal can be calculated by the
weighting field ~EEV ð~xx; tÞ: The induced signal is only
due to the movement of the charges. The same
relation is of course true for the induced current:

I1ðtÞ ¼
Q

v0

Z t

0

~EEI ð~xx1ðt0Þ; t � t0Þ ’~xx1ðt0Þ dt0

þ
Q

v0

Z t

0

~EE I ð~xx2ðt0Þ; t � t0Þ ’~xx2ðt0Þ dt0 ð44Þ

4.2. Connection between induced current and

voltage

Finally, we want to find the connection between
the voltage induced on the electrodes and the
currents induced on the electrodes in case they are
grounded. Arguing in the s-domain, the weighting
potential for the induced voltage on electrode 1,
%cV ð~xx; sÞ; is defined by a current pulse q0 on the
electrode 1. This current pulse will create voltage
signals

%viðsÞ ¼ Z1iðsÞq0 ð45Þ

on all the electrodes, where Zij is the impedance
matrix defined earlier. A current pulse q0 on
electrode 1 is therefore equal to voltage pulses %viðsÞ
on the electrodes. The corresponding potential %cV

for this boundary condition %viðsÞ is given by

%cV ð~xx; sÞ ¼
X

i

%viðsÞ
1

v0
%cið~xx; sÞ

¼ q0

X
i

Z1iðsÞ
1

v0
%cið~xx; sÞ ð46Þ

where %cið~xx; sÞ are the potentials when electrode i is
put to voltage v0 and all others are grounded. This,
however, is the definition of the weighting

potentials for the current induced on the grounded
electrodes. Therefore, we have the following
connection:

The voltages induced by a time-dependent
charge distribution on electrodes embedded in
a medium of permittivity eð~xx; sÞ and conductiv-
ity sð~xx; sÞ are connected with the currents
induced by the same charge distribution on
the grounded electrodes with the characteristic
impedance matrix ZijðsÞ through

%ViðsÞ ¼
X

j

Zij %I
G
j ðsÞ: ð47Þ

This is a very useful result since usually cI and
therefore IG are easy to calculate from electrostatic
solutions, and once we know cI for all electrodes
we also know Zij as seen from definition (26). We
will show an example later.

5. RPC with infinite plane electrode

To illustrate the formalism, we first study the
signal induced on an infinite plane electrode in an
RPC like detector geometry. After that we look at
the signal induced on a strip electrode. In these
examples we calculate the induced current on a
grounded electrode. The induced voltage on an
electrode connected to an amplifier will be treated
later. We will assume that an electron and an ion
are produced in one point, the electron is moving
with velocity v and the ion does not move.

5.1. Resistive layer touching the plane electrode

First we apply the formalism to the geometry
shown in Fig. 5. A point charge Q is moving
between two resistive layers and we want to know
the induced current on electrode 1.

The electrostatic weighting field of electrode 1,
i.e. the electric field in the gap in case electrode 1 is
put to voltage v0 is given by

Ez ¼
v0e1e3

e2e3d1 þ e1e3d2 þ e1e2d3
: ð48Þ

By applying the statements from Section 2 we
derive the time-dependent weighting field, i.e. the
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electric field in the gap for a voltage pulse v0dðtÞ by
replacing e1; e3-e0er þ s=s; e2-e0 which gives

EzðsÞ ¼
v0ðsþ ere0sÞ

ðd1 þ d2er þ d3Þe0s þ sd2
: ð49Þ

In the limit if very small and very large con-
ductivity we find

lim
s-0

EzðsÞ ¼
v0er

d1 þ d2er þ d3
;

lim
s-N

EzðsÞ ¼
v0

d2
: ð50Þ

For small conductivity the weighting field is just
the electrostatic one. For large conductivity the
resistive layers can be viewed as part of the
electrodes and the RPC is equal to an empty
condenser with plate separation d2: For finite
conductivity s the time-dependent weighting field
is found by inverse Laplace transform of the above
expression which gives

EzðtÞ ¼ v0
er

d1 þ d2er þ d3
dðtÞ

�

þ
s
e0

d1 þ d3

ðd1 þ d2er þ d3Þ
2
e�t=t

�

t ¼
e0
s
ðd1 þ d2er þ d3Þ

d2
: ð51Þ

Using Eq. (44), the current induced by a charge Q

created on the edge of the gas gap at t ¼ 0

and moving with a constant velocity v through the
gap d2 until it hits the resistive layer at T ¼ d2=v is

IðtÞ ¼
Q

v0

Z t

0

Ezðt � t0Þv dt0 ð52Þ

which gives

IðtÞ
Qv

¼
1

d1 þ d2er þ d3

� er þ
d1 þ d3

d2
ð1� e�t=tÞ

� �
; toT

¼
1

d1 þ d2er þ d3

d1 þ d3

d2
ðeT=t � 1Þe�t=t; t > T

ð53Þ

The result is shown in Fig. 6. For tbT the
resistive plates act like insulators and the signal
is not affected by the conductivity. For t5T the
resistive plates act like perfect conductors and the
detector looks like an empty capacitor with gap d2:
The total induced charge is

R
IðtÞ dt ¼ Q indepen-

dent of the conductivity of the resistive plates. The
‘current tail’ for t > T is due to the ‘annihilation’
of the charge sitting on the surface of the resistive
plate which was pointed out in Section 2.2.

In Trigger RPCs [5], typical values are TE20 ns
and 1=sE1010 O cm: Therefore t ¼ e0=sE10�3 s
which is much larger than T ; so the conductivity of
the resistive plates has no influence whatsoever on

I(t)

εr

εr

d2 ε2

σ

σ

vQ

electrode 1

ε0

d3 ε3

ε1d1

Fig. 5. Resistive Plate Chamber. The charge moving in the gas

gap induces a current IðtÞ on the electrode. The finite resistivity

of the plates affects the signal.
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Fig. 6. Current induced on the electrode from Fig. 5. If tET

the signal shows an exponential time dependence. For Tbt and
T5t the signals are equal to the electrostatic case.
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a single RPC signal. For timing RPCs [6] typical
values are TE1 ns and 1=sE1012 O cm; so the
effects is even smaller. We can conclude that in
‘standard’ RPCs the resistive plates affect the
signal only through their dielectric constant.

5.2. Resistive plate between gas gap and plane

electrode

Next we look at the geometry shown in Fig. 7.
The gap where the charge is moving is separated
from the electrode through a resistive plate. The
electrostatic weighting field in the gap is now given
by

Ez ¼
v0e1e2

e2e3d1 þ e1e3d2 þ e1e2d3
: ð54Þ

If the resistive layer 1 has a permittivity er and
layer 2 the conductivity s we replace e1-ere0;
e2;-e0 þ s=s and e3-e0 and we find

EzðsÞ ¼
v0ðersþ e0sÞ

½d1 þ ðd2 þ d3Þer�e0s þ sðd1 þ erd3Þ
: ð55Þ

In the limit if very small and very large con-
ductivity we find

lim
s-0

EzðsÞ ¼
v0

d1 þ ðd2 þ d3Þer
;

lim
s-N

EzðsÞ ¼
v0er

d1 þ erd3
: ð56Þ

We find that even for perfect conductivity of the
resistive layer the movement of the charge induces
a signal on the electrode. At first sight this seems
counter-intuitive since we expect a perfect con-
ductor to shield the signal from the electrode.
However, this is only true if the conductor is
grounded. If it is however floating (like in our
assumption) a positive charge Q induces a negative
charge on the top surface. This will result in a
positive charge on the down side of the plate which
in turn induces a negative charge on the electrode
which explains why a floating electrode is ‘trans-
parent’.

The time-dependent weighting field for finite
conductivity has the same form as the one in
Eq. (51) with different time constants so the
induced signals have the same shape as shown in
Fig. 6.

5.3. Resistive layer on dielectric insulator and plane

electrode

Now we turn layer 2 into an infinitely thin
layer with a given surface resistivity R: We use
Eq. (55) replace s with 1=ðd2RÞ and set d2-0
which gives

EzðsÞ ¼
v0er

d1 þ erd3
ð57Þ

which means that a thin floating layer with
whatever surface resistivity R has no influence on
the current induced on the electrode and the
weighting field is the same as the one for a
geometry without layer 2! All these conclusions are
only valid for an infinite plane electrode. The next
section which treats strip electrodes will clarify this
picture.

6. Strip electrode

To study the signals induced on a strip electrode
in presence of conducting material we start with
the electrostatic weighting field for the geometry
shown in Fig. 8.

The z-component of the electric field in layers 2
and 3 when applying the potential v0 to the strip

 εr

d2 ε2

d3 ε3

d1 ε1

I(t)

vQ

electrode 1

σε0

ε0

Fig. 7. Detector where the gas gap is separated from the

electrode by a resistive layer.
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electrode of width w is given by [7]

Ei
zðx; zÞ

¼
4v0

p

Z
N

0

dk cosðkxÞ sin k
w

2

� �
Fiðk; zÞ ð58Þ

with

F2ðk; zÞ ¼
e1ðe2 þ e3Þ cosh½kðp � zÞ�

DðkÞ

�
e1ðe2 � e3Þ cosh½kðp þ z � 2gÞ�

DðkÞ
ð59Þ

F3ðk; zÞ ¼
2e1e2 cosh½kðp � zÞ�

DðkÞ
ð60Þ

DðkÞ ¼ ðe1 þ e2Þðe2 þ e3Þ sinh½kðp þ qÞ�

� ðe1 � e2Þðe2 þ e3Þ sinh½kðq � pÞ�

� ðe1 þ e2Þðe2 � e3Þ sinh½kð2g þ q � pÞ�

þ ðe1 � e2Þðe2 � e3Þ sinh½kðp þ q � 2gÞ�:

For x ¼ 0; w-N the expressions transform into

E2
z ðx; zÞ ¼

v0e1e3
e2e3q þ e1e3g þ e1e2ðp � gÞ

E3
z ðx; zÞ ¼

v0e1e2
e2e3q þ e1e3g þ e1e2ðp � gÞ

ð61Þ

which recuperates expressions (48) and (54) for the
infinite plane electrode. The time-dependent
weighting field in case the layers have conductiv-
ities s1;s2;s3 can again be calculated by replacing
ei with ei þ si=s and performing the inverse
Laplace transform. We will only show a qualita-
tive discussion of the geometries with resistive
plates and a careful quantitative discussion of the
effect of the thin resistive layer.

6.1. Resistive layer touching the strip electrode

First we study the geometry from Section 5.1 for
a strip electrode. Layers 1 and 3 have conductivity
s and layer 2 is the gas gap where the charge is
moving. We use F2ðk; zÞ and replace e1; e3-e0er þ
s=s; e2-e0: For infinite conductivity of the resis-
tive plates we find

lim
s-N

F2ðk; zÞ ¼
v0 cosh½kðg � zÞ�

2 sinhðkgÞ coshðkqÞ
ð62Þ

so E2
z stays finite and we still find a signal on the

strip. This is intuitively clear since the bottom
plate is in direct contact with the strips and the
charge induced on the plate is flowing from the
strips onto the resistive plate.

6.2. Resistive plate between gas gap and strip

electrode

To study the geometry from Section 5.2 where
the gas gap and the readout electrode are
separated by a resistive and an insulating layer
we use F3ðk; zÞ and replace e1-e0er; e2-e0 þ
s=s; e3-e0: For infinite conductivity of the resis-
tive layer we find

lim
s-N

F3ðk; zÞ ¼ 0 ð63Þ

so the layer ‘shields’ the signal from the strip.
From Section 5.2 we know that the signal induced
on an infinite plane electrode is not shielded by the
conducting layer, so if we imagine many strips next
to each other we know that the sum of the signals
on all strips is given by Eq. (55). From this we see
that the resistive plate will cause crosstalk to the
other strips and the lower the resistivity the more
strips will show a signal and the smaller the signal
on the individual strips will be. For common RPCs
the plate resistivity is so high that there is no effect
on the induced signal. However, in some RPCs the
voltage is supplied to the resistive plate through a
thin carbon layer with surface resistivity between
105 and 106 kO which can have an effect on the
signal as shown in the next section.

z

z=0

x=-w/2 x=w/2x=0

ε3

ε2

ε1

z=g

z=-q

z=p

Fig. 8. Geometry with a strip electrode of width w and three

layers of different permittivities.
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6.3. Resistive layer on dielectric insulator and strip

electrode

Now layer 1 should represent an insulating
dielectric with relative dielectric constant er; layer 2
should represent an infinitely thin resistive layer
with a given surface resistivity of R and layer 3 is
the gas gap. We use F3ðk; zÞ and set s ¼ 1=ðgRÞ;
replace e1-e0er; e2-e0 þ s=s; e3-e0; take the lim-
it g-0 and we find the expression

which we can write as

F3ðk; zÞ ¼ bðk; zÞ
sRCðkÞ

1þ sRCðkÞ
: ð65Þ

This is equal to the transfer function of a
differentiating RC element. In the previous section
we saw that the total signal induced on the infinite
electrode is not affected by the resistance R and is
equal to the electrostatic case. The signal on the
strip with finite width is however differentiated
and therefore, we expect also signals on the
neighbouring strips such that all of them add up
to the signal given before. So for decreasing
resistance we expect increasing signal differentia-
tion on the central strip and increasing crosstalk to
all other strips. Performing the inverse Laplace
transform we find the expression for the time-
dependent weighting field:

Ezðx; z; tÞ

¼
4v0

p

Z
N

0

dk cosðkxÞ sin k
w

2

� �

� f1ðk; zÞdðtÞ �
f2ðk; zÞ

t
exp �

t

t
f3ðkÞ

� �� �
ð66Þ

with t ¼ Re0ðp þ qÞ and

f1ðk; zÞ ¼
1

2

�
er cosh½kðp � zÞ�

sinh½kðp þ qÞ� þ ðer � 1Þ sinhðkpÞ coshðkqÞ
ð67Þ

f2ðk; zÞ ¼
kðp þ qÞ

2

�
er sinhðkpÞ sinhðkqÞ cosh½kðp � zÞ�

sinh½kðp þ qÞ� þ ðer � 1Þ sinhðkpÞ coshðkqÞ
ð68Þ

f3ðkÞ

¼
kðp þ qÞ sinhðkpÞ sinhðkqÞ

sinh½kðp þ qÞ� þ ðer � 1Þ sinhðkpÞ coshðkqÞ

ð69Þ

where f1; f2; f3 are dimensionless functions. The
signal induced by a point charge Q moving along z

is then given by

IðtÞ ¼
Q

v0

Z t

0

Ezðx; zðt0Þ; t � t0Þ’zðt0Þ dt0: ð70Þ

In particle detectors one usually has an electron
avalanche that induces the signal and since the
avalanche grows exponentially, the largest part
of the induced signal is due the very end of the
avalanche development. For our calculation
this means that we are interested only in a very
small z range of the weighting field where we
can assume it to be constant. Assuming now
that the charge is moving with a velocity v between
time 0otoT ‘around’ position z0 we can per-
form the integration and (after changing the
integration variable to r ¼ ðp þ qÞk) we find for
toT :

Iðt; z0Þ
Qv

¼
8

p

Z
N

0

dr

p þ q
cos r

x

p þ q

� �
sin r

w

2ðp þ qÞ

� �

� f1
r

p þ q
; z0

� �
exp �

t

t
f3

r

p þ q
; z0

� �� �
ð71Þ

F3ðk; zÞ ¼
1

2

se0Rer cosh½kðp � zÞ�
k sinhðkpÞ sinhðkqÞ þ se0R½ðer � 1Þ coshðkqÞ sinhðkpÞ þ sinh½kðp þ qÞ��

ð64Þ
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and for t > T :

Iðt; z0Þ
Qv

¼ �
8

p

Z
N

0

dr

p þ q
cos r

x

p þ q

� �

� sin r
w

2ðp þ qÞ

� �
f1

r

p þ q
; z0

� �

� exp
T

t
f3

r

p þ q
; z0

� �� �
� 1

� �

� exp �
t

t
f3

r

p þ q
; z0

� �� �
ð72Þ

Fig. 9 shows examples of signals for different
resistivities R: For decreasing resistance R (de-
creasing t) the signal on the central strip is more
and more differentiated and the crosstalk to the
first neighbour increases. Decreasing the resistance
even more will cause a differentiated signal also on
the first neighbour and will start crosstalk to the
second neighbour, etc.

For a surface resistivity of 100 kO and p ¼ q ¼
2 mm we have t ¼ 3:5 ns which is comparable to
T ¼ 20 ns in Trigger RPCs, so we can conclude
that resistivities around 105 O of the layers
supplying the voltage to resistive plates in RPCs
with gap and plate dimensions of a few mm have
an effect on the induced signals.

7. Induced voltage

Now we want to find the voltage induced in the
detector shown in Fig. 5 in case the electrode is
connected to ground through a general impedance
network ZAðsÞ (Fig. 10).

As described in the introduction we consider this
impedance to be ‘part of the medium’. As shown in
Section 4.2 this voltage is connected with the
current induced on the grounded electrode
through

V1ðsÞ ¼ Z11ðsÞI1ðsÞ ð73Þ

where I1ðsÞ was already calculated in Section 5.1
and is given by Eq. (53). To find Z11 we need the
current i ext flowing onto the electrode for a voltage
delta pulse v11 on the electrode. The electric field
on the electrode surface is

E1 ¼
v11e0

ðd1 þ d3Þe0 þ d2ðe0er þ s=sÞ
ð74Þ

and therefore the charge on the electrode surface is

q1ðsÞ ¼ ere0E1A ð75Þ

where A is the electrode area. The current leaving
the surface of the electrode is

i1ðsÞ ¼ sE1 þ
v11

ZAðsÞ
: ð76Þ
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Fig. 9. Signal induced by a charge Q moving at x ¼ 0 along z

with velocity v between t ¼ 0 and T for the geometry shown in

Fig. 8. The distances p and q are 2 mm; the strip width is

w ¼ 10 mm: (a) shows the signal induced on the central strip

and (b) shows the signal induced on a neighbour strip of same

width. For decreasing values of t ¼ Re0ðp þ qÞ the signal on the

central strip is differentiated and the crosstalk to the neighbours

increases.
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With i ext1 ¼ sqðsÞ þ i1ðsÞ and Z11 ¼ v11=i ext1 we
have

Z11 ¼
ZAðsÞZDðsÞ

ZAðsÞ þ ZDðsÞ
ð77Þ

where the detector impedance ZDðsÞ is given by

ZDðsÞ ¼
d1 þ erd2 þ d3

Aðse0er þ sÞ
þ

d2s
se0Aðse0er þ sÞ

: ð78Þ

In case s is zero the detector impedance becomes

ZDðsÞ ¼
1

sCD
; CD ¼

Ae0er
ðd1 þ erd2 þ d3Þ

ð79Þ

where CD is the detector capacitance. The equiva-
lent circuit is shown in Fig. 11. Applying the
current signal derived in Section 5 to this
equivalent circuit gives the voltage induced on
the electrode.

8. Conclusions

We have investigated the signals induced on
electrodes embedded in a conducting environment
by using the quasi-static approximation of Max-
well’s equations. The signals can be calculated by
time-dependent weighting fields as also shown in
Ref. [8]. If the electrostatic solution of the
weighting field for an insulating medium with

given e1ð~xxÞ is known, the time-dependent weight-
ing field for a medium with conductivity sð~xx; sÞ
and permittivity eð~xx; sÞ is given by replacing e1ð~xxÞ
with eð~xx; sÞ þ sð~xx; sÞ=s and performing the inverse
Laplace transform.

As examples we treated RPC like geometries, in
particular we studied the effect of a thin resistive
layer on the signal induced on a strip electrode. We
conclude that decreasing surface resistivity of this
layer introduces signal differentiation on the
central strip and crosstalk to the neighbour strips.

The resistivity of the materials used in ‘standard’
RPCs results in time constant that are a few orders
of magnitude larger than the duration of the
charge movement in the detector and has therefore
negligible influence on the signal. The thin carbon
layers used for HV contact in RPCs with surface
resistivities of 0.1–1 MO however result in time
constants that are comparable to the charge
movement duration and were therefore studied
carefully in this report.
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