Gaseous radiation detectors

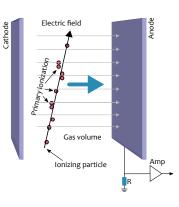
Introduction

From introduction lecture

Gaseous radiation detectors

- Material that interacts with incoming radiation is the gas inside the detector.
- Gas ionizes along particle trajectory ⇒ electron

 ion-pairs.
- Principle: Primary ionization \rightarrow secondary ionization \rightarrow drift to electrodes \rightarrow (gas multiplication) \rightarrow charge induction \rightarrow signal.
- All kind of configurations possible: Proportional counter, drift chamber, Time Projection Chamber (TPC), etc.
- Good for large area tracking detectors (economical).
- ⇒ Let's go into more details!



Ionization processes

Remember from last lecture

- Electromagnetic radiation interacts mostly via photoelectric effect, Compton scattering and pair production:
- Charged particles loosing energy via inelastic collisions (excitation, ionization),
 Bremsstrahlung and Cerenkov radiation.
- Primary ionization: $X \xrightarrow[\text{rad.}]{} X^+ + e^-$
- Secondary ionization if $E_{e^-} > E_i$ (called δ electrons)

Average ionization in gases

• The mean number of electron-ion -pairs $\langle n_T \rangle$ can be calculated by

$$\langle n_T \rangle = \frac{L \cdot \langle \frac{dE}{dx} \rangle_i}{W_i}$$

with the thickness of the gas layer L, the ionization energy E and the average energy needed to produce an electron-ion pair W_i .

• Ionization is Poissonian process,

$$P(n,\langle n\rangle) = \frac{\langle n\rangle^n \exp\{-\langle n\rangle\}}{n!}.$$

Here the mean number of ionization processes $\langle n \rangle$) = L/λ with $\lambda = 1/(n_e \sigma_I)$ and σ_I the ionization cross-section.

Ionization processes

Characteristics of common gases

Gas	$ ho~[{ m g/cm^3}]$	I_0 [eV]	W_i [eV]	$\frac{dE}{dx} \left[\frac{\text{kev}}{\text{cm}} \right]$	$n_P \left[\frac{\text{I.P}}{\text{cm}} \right]$	$n_T \left[\frac{\text{I.P}}{\text{cm}} \right]$
H ₂	8.38×10^{-5}	15.4	37	0.34	5.2	9.2
He	1.66×10^{-4}	24.6	41	0.32	5.9	7.8
N_2	1.17×10^{-3}	15.5	35	1.96	10.0	56.0
O_2	1.33×10^{-3}	12.2	31	2.26	22.0	73.0
Ne	8.39×10^{-4}	21.6	36	1.41	12.0	39.0
Ar	1.66×10^{-3}	15.8	26	2.44	29.4	94.0
Kr	3.49×10^{-3}	14.0	24	4.60	22.0	192.0
Xe	5.49×10^{-3}	12.1	22	6.76	44.0	307.0
CO_2	1.86×10^{-3}	13.7	33	3.01	34.0	91.0
CH₄	6.70×10^{-4}	13.1	28	1.48	16.0	53.0

Table: Characteristic numbers of common gases: a.o. the average energy to produce electron-ion pair W_i , the number of primary and total electron-ion pairs per length n_P , n_T and the energy loss per length dE/dx. Values extracted from K. Kleinknecht, Detektoren für Teilchenstrahlung, Teubner (2005)

Note: Factor 2 - 6 between n_P to n_T .

Transport of ions in gas

• Ions move with thermal motion in random directions

$$\langle T_{\text{ion(thermal)}} \rangle = \frac{3}{2}kT.$$

In case of external electric field ions additionally drift along field lines

$$\nu_D^+ = \mu^+ \frac{EP_0}{P}.$$

with μ^+ being the ion mobility, E the field strength, P the pressure and P_0 the normal pressure. More or less linear dependence on field strength.

• Typical speed of ions $\mathcal{O}(\frac{cm}{ms})$.

Transport of electrons in gas

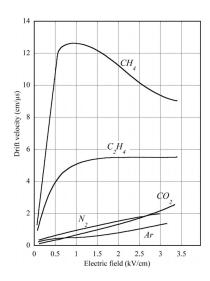
- Electron drift more complicated due to their larger mean free path. The higher mobility allows them to gain higher velocities between collisions.
- No linear dependence on electric field strength. Saturation effects, even decreasing possible.

• Townsend formula

$$\nu_D^- = k \frac{qE}{m} \tau$$

with electron energy distribution coefficient k and the average time between collisions τ .

- Quantitatively not very useful. Strong dependence on gas mixture and field strength.
- Cold gas: Kin energy \approx termal energy. $\nu_D \sim E$, mobility const.
- Hot gas: Kin energy \gg termal energy. $\nu_D \approx const.$, mobility not const.
- Typical speed of ions $\mathcal{O}(\frac{cm}{us})$



Drift velocities in gas mixtures

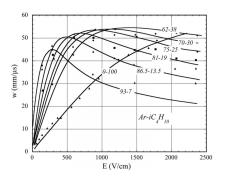


Figure: Drift speed of electrons in various Ar-isobutane mixtures (Breskin et al., 1974b).

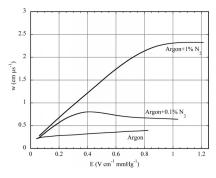


Figure: Drift speed dependence on small gas mixture changes (Colli & Fachini, 1952).

Diffusion

- Based on classical kinetic theory of gases.
- Can use Fick's second law

$$\frac{\partial \phi}{\partial t} = D\nabla^2 \phi$$

Here ϕ is the concentration of particles and D the diffusion coefficient.

 In case diffusion starts from a point it behaves Gaussian like with

$$\sigma_{x} = \sqrt{2Dt}$$

• Diffusion coefficient D depends on thermal velocity ν ,

$$\nu = \sqrt{\frac{3k_BT}{m}}$$

with k_B being the Boltzmann constant and T the temperature.

• E field acts on longitudinal diffusion, B field on transverse component.

Ionization chamber

Most simple gaseous detector

- Parallel plates in gas enclosure.
- High voltage source.
- Current meter.
- Electric field in chamber

$$E=\frac{U}{d}$$

where U is the potential difference between plates and d the distance of the plates.

• Can be used in direct current mode and in pulse mode.

Current mode

- Ionizing radiation generates continuously electron-ion pairs.
- Their drift towards electrodes generates steady dc current.

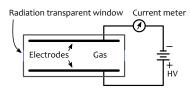
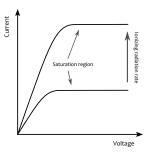


Figure: Ionisation chamber made by Pierre Curie (CC BY-SA 2.0).

Ionization chamber

Current mode (cont.)

- Current measured by picoammeter.
- Increasing voltage reduces recombination effects (columnar and volume) ⇒ measured current increases.
- Saturation effect takes place when effectively no recombination anymore and all ionization charge contributes to the current.
- Large gas variety for ionization chambers (e.g. also air possible).



What are recombination?

- Electrons and ions from the ionization processes can be captured before reaching the electrodes.
- Positive ions get neutralized by free electrons or negative ions.
- Electrons get captured by negative ions or electronegative gas atoms (e.g. O_2).

Ionization chamber

Pulse mode

- Possible to do spectroscopy, measuring single ionization processes (energy).
- Signal by measured voltage over load resistor.
- Starting with E = U/d and energy conservation,

$$\frac{1}{2}CU^{2} = \frac{1}{2}CU_{0}^{2} - n\int_{x_{0}}^{x} qE_{x}dx$$

we get

$$\Delta U = -\frac{nq}{Cd}(x - x_0).$$

Assuming const. drift velocity we get for ions

$$\Delta U^{+} = -\frac{ne}{Cd} \nu_{D}^{+} \Delta t^{+}$$

and for electrons

$$\Delta U^{-} = -\frac{n(-e)}{Cd}(-\nu_D^+)\Delta t^{-}.$$

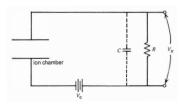


Figure: Ion chamber with in pulse readout (Knoll 2014).

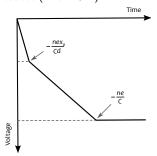
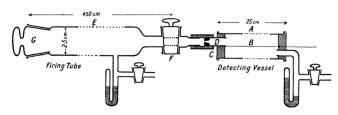


Figure: Ion chamber pulse shape.

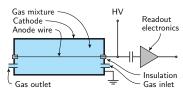
Original design - Rutherford & Geiger (1908)



• Electric field in chamber

$$E(r) = \frac{U}{r \ln \left(\frac{r_{c}}{r_{a}}\right)}$$

where U is the potential difference between plates and r_a , r_c the radii of the anode and cathode.



• Configuration with a thin wire allows for high fields close to the anode.

Avalanche formation

- Due to high electric field strength around anode primary electrons gain high velocity (10⁴ – 10⁵ V/cm).
- Now electrons have enough kinetic energy – between collision – to ionize themselves atoms.
- Thus an electron avalanche is generated.

Figure: Simulation of avalanche in proportional counter.

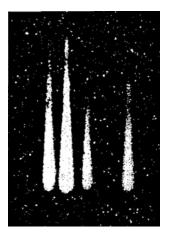


Figure: Electron avalanches in cloud chamber (H. Raether, Butterworth (1964))

Avalanche formation

 The probability of having a secondary ionization per unit path length in gas can be expressed by the Townsend coefficient

$$\alpha = \frac{1}{\lambda_{\rm ion}} = \sigma_i N$$

where λ_{ion} is the mean free path of ions, σ_i the ionization cross section and N the atom/molecule density.

• The change of number of electrons n_0 after path x

$$\frac{dn}{dx} = \alpha n$$

leads to the following expression in case the Townsend coefficient is independent of x

$$n(x) = n_0 \exp(\alpha x)$$
.

• In case of $\alpha(x)$

$$n(x) = n_0 \exp\left(\int \alpha(x) dx\right).$$

• The ratio $n(x)/n_0$ is gas amplification (gain).

Avalanche evolution

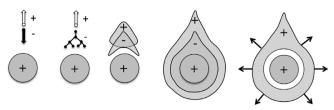


Figure: Evolution of avalanche around wire (F. Sauli, *Gaseous Radiation Detectors – Fundamentals and Applications*, Cambridge).

- 1 "Primary" electron drifts towards anode.
- Electron accelerates in high fields close to anode and ionizes surrounding atoms (gas multiplication).
- 3 Diffusion of electrons and ions take part.
- 4 Avalanche develops around anode wire.
- **§** Electrons quickly recombined at anode $(\mathcal{O}(1ns))$. Positive ions drift towards cathode and induce "large" signal on anode.

Regions of operation

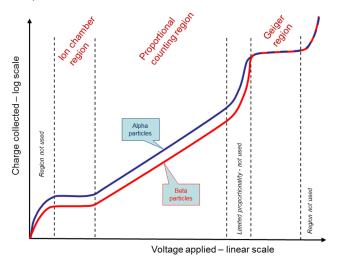


Figure: Region of operation of gas-filled detectors (taken from Wikipedia).

Gas multiplication factor (following Knoll)

• Total charge assuming independent avalanches and minimal space charge effects

$$Q = n_0 eM$$
.

Here M is the gas multiplication factor and n_0 the number of primary ion pairs.

• Using the electric field expression for cylindrical tubes with $\alpha(r)$, M can be written

$$\ln M = \int_a^{r_{\text{critical}}} \alpha(r) dr.$$

The Townsend coefficient α is depending on the gas type and the electric field.

• Equation can be written in term of the electric field $\mathcal{E}(r)$

$$\ln M = \int_{\mathcal{E}(a)}^{\mathcal{E}(r_{\text{critical}})} \alpha(\mathcal{E}) \frac{\partial r}{\partial \mathcal{E}} d\mathcal{E}.$$

 Using the electric field equation for the cylindrical configuration
 E(r) = U/r ln (r_c/r_a) we get,

$$\ln M = \frac{U}{\ln(b/a)} \int_{\mathcal{E}(a)}^{\mathcal{E}(r_{\mathbf{critical}})} \frac{\alpha(\mathcal{E})}{\mathcal{E}} \frac{d\mathcal{E}}{\mathcal{E}}.$$

Gas multiplication factor (cont.)

• Diethorn further developed the equation assuming linearity between α and $\mathcal E$ (details found in references listed in Knoll),

$$\ln M = \frac{V}{\ln(b/a)} \frac{\ln 2}{\Delta U} \left(\ln \frac{V}{pa \ln(b/a)} - \ln K \right).$$

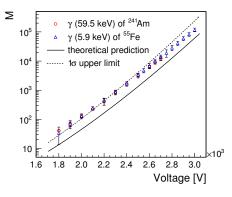
• Here:

 $p \rightarrow \text{gas pressure}$.

 $K \to \text{minimum value of } \mathcal{E}/p \text{ for gas multiplication (found in tables)}.$

 $\Delta V \to {
m potential}$ difference an electron undergoes between ionization points (found in tables).

 Figure: Comparison of measured gas multiplication factor to theoretical using the Diethorn formula.



Space charge

- The ions from the avalanches that move slowly towards the cathode, cause space charge.
- Space charge is spread throughout the camber due to diffusion and will distort the field.
- Close to the anode wire space charge can reduce the field strength.
- Signal can be reduced, it has an effect on the energy resolution.
- Not dramatic in proportional counters we build here in the lab but we will see later that space has a major affect on large Time Projection Chambers used at LHC.

Energy resolution (Knoll 2014)

There is naturally a charge fluctuation in the readout pulses from detectors.
 For gas filled detectors we have independent fluctuation of produced ion-pairs and avalanche variations,

$$\left(\frac{\sigma_Q}{Q}\right)^2 = \left(\frac{\sigma_{n_0}}{n_0}\right)^2 + \left(\frac{\sigma_M}{M}\right)^2$$

Energy resolution

· Rewriting the equation for single avalanche multiplication factor

$$\sigma_M^2 = \left(\frac{1}{n_0}\right)^2 \sum_{i=1}^{n_0} \sigma_A^2 = \frac{1}{n_0} \sigma_{A_{\text{typical}}}^2$$

$$\Rightarrow \left(\frac{\sigma_Q}{Q}\right)^2 = \left(\frac{\sigma_{n_0}}{n_0}\right)^2 + \frac{1}{n_0} \left(\frac{\sigma_{A_{\text{typical}}}}{A_{\text{typical}}}\right)^2$$

• The fluctuations of primary ion-pairs (first part of eq.) can be estimated to some extent with the Fano factor

$$\sigma_{n_0} = Fn_0$$
.

(Fano factor: additional factor multiplied to the variance of the Poission distribution describing the ionization process. Measured the variance is usually smaller than models predict. Therefore Fano factor < 1)

Energy resolution

② Avalanche variations: The number of electrons in avalanche can be described by Polya distribution with Θ being a related to electron fraction exceeding the ionization threshold energy $(0 < \Theta < 1)$

$$P(A) = \left(rac{A(1+\Theta)}{\overline{A}}
ight)^{\Theta} \exp\left(rac{-A(1+\Theta)}{\overline{A}}
ight) \Rightarrow \left(rac{\sigma_A}{\overline{A}}
ight)^2 = rac{1}{\overline{A}} + b.$$

Here $b = 1/(1 + \Theta)$ with values around 0.5.

• Summing up (for large \overline{A}) we get for the charge variance

$$\left(\frac{\sigma_Q}{Q}\right)^2 = \frac{1}{n_0}(F+b)$$

 Using the the energy of the ionizing radiation and the mean energy for ion-pairs in gas, which give the number of ion-pairs, we get

$$\frac{\sigma_Q}{Q} = \sqrt{\frac{W(F+b)}{E}}.$$

• Theoretical values – with grain of salt – of energy resolution for Ar gas and the ⁵⁵Fe photo-peak is 12.8% (using the factor 2.35 to convert from stddev to usual FHWM based definition).

Something additional about gases

Quenching

- The gas emits photons when excited by electron impacts. Typically from 150 nm to visible light.
- These photons may cause spurious pulses via photoelectric effect in the electrodes of the detector.
- May cause interactions in the gas loss of proportionality of avalanches.
- Depends on gas mixture, detector geometry, pressure and electric field.
- Fixed by adding a molecular gas into the mixture absorbs the photons.
- Different in Geiger-Müller tubes.

Pennning effect

- Sometimes the quenching gas (or another additional gas component) has
 excitations that are lower than the ionization energy of the bulk gas.
- Exitations are effectively transferred in collisions and may cause additional ionization: W is lowered for the mixture.
- Depends on the field strength.

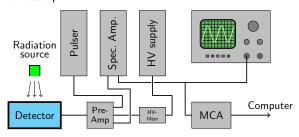
Setup

• Using a self build proportional counter from a beverage can with a strand of a normal electric wire ($\varnothing \approx 100 \mu m$) serving as anode.

Figure: Proportional counter: Visible also the high voltage connector, the ground connection to the cathode, the gas supply tube and shielding alufoil.

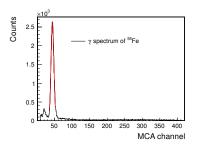
Setup

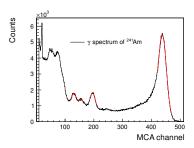
- Gas mixture: P10, consisting of 90% Ar and 10% methane (quenching gas).
- Operational voltage region from 1 to more than 3 kV (over 4 kV glowing discharge observed).
- Used ionizing radiation sources: ⁵⁵Fe and ²⁴¹Am.
- Measurement setup:



Results

- Spectra of ⁵⁵Fe and ²⁴¹Am. Detector at moderate voltage of 2.25 kV.
- Not shown: How to calibrate measurement setup (part of labwork)





• What small peak left of photopeak of ⁵⁵Fe spectrum?

Escape peak

- Remember from last lecture:
 Photoelectric effect most important for low energy spectroscopy.
- Full absorbtion of X-ray leads to so-called photo-peak.
- Absorbtion of photons in noble gases show discontinuities (absorbtion edges).
- Characteristic x-rays from exited gas atoms (mostly K shell) after photoelectric process.
- Those x-rays may escape detector which leads to the so-called escape peaks.
- Position of escape peak lower to photo-peak with distance of escaping x-ray energy.

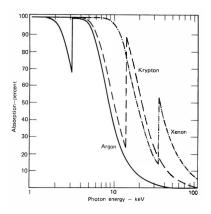


Figure: Absorbtion of photons in various noble gases (Knoll 2014).

Geiger-Müller counter

Principle

- Usage of similar gases as in proportional counter.
- Configuration of detector such that operates above the proportional region.
- In avalanches surrounding atoms get excited and radiate soft photons that generate via photoelectric effect electron-ion pairs that form additional avalanches.
- Within a few microsecond we get a total discharge and a large signal.

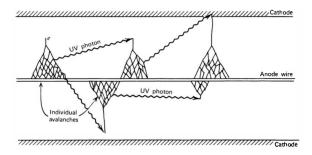


Figure: Discharge mechanism in Geiger-Müller counter (Knoll 2014).

Geiger-Müller counter

Readout

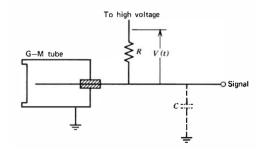
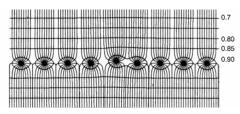


Figure: Circuit for fast voltage restoration in G-M tube (Knoll 2014).

Multiwire chamber

The next step

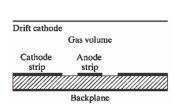
- George Charpak invented this idea (1968).
- Introducing independent wires between planar electrodes, each working as proportional counter..
- First truly position sensitive gas detector.
- Short drift allows for fast detector up to 100 ns timing resolution.
- 2d detectors by using multiple chambers with crossed wires.
- Got a nobel prize 1992.

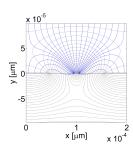


Microstrip detector

First micropattern gas detector type (MPGD)

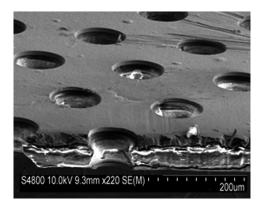
- Alternating cathode anode strips on a resistive surface.
- Basically works like a multiwire chamber.
- Easy to manufacture with litography a huge development over multiwire chamber when pitch in hundreds of microns is needed.
- Field strength increases in the edges of the strips sparking and eventually aging (destruction of the anode structure).





GEM

- Versatile and robust type of micropattern gaseous radiation detectors.
- Active component: Thin (50 μ m) polyimide foil coated with copper (5 μ m) from both sides.
- Microscopic holes with a typical diameter of 70 μ m are etched chemically through the foil.



Electric field configurations

 When high voltage is applied over the copper electrodes, a strong electrostatic field inside the holes allows gas multiplication of electrons.

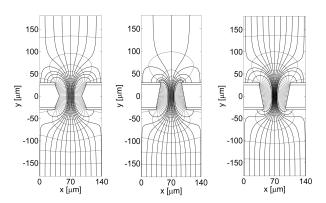
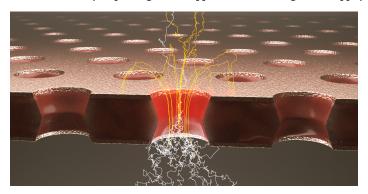


Figure: 2d plot of field lines in and close by a GEM hole, made with double mask technique (left) and single mask technique (middle, right).

GFM simulation

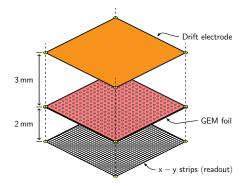
• Simulation of an avalanche produced by a single drifting electron using the Garfield++ tool (https://garfieldpp.web.cern.ch/garfieldpp/).



 Note: Backflowing ions are to some extend captured by copper electrodes which reduces space-charge in drift space.

Example setup of a GEM detector

- Most simple example consists of: Drift electrode, GEM foil, readout strip/pad -plane and gas tight box.
- Negative voltages are applied to all layers in decreasing order to generate electric field of one direction inside chamber.
- Ionization of interest occurs in drift space between drift electrode and GEM



- Avalanches that occur in GEM holes drift through induction space towards readout plane and induce current.
- Very important for the operation is the voltage setup that defines the gas multiplication, the collection efficiency and the extraction efficiency.
- Will come back with special lecture about GEM based detectors if time allows

Simulation of gas filled detectors

- Very few field configurations can be analytically solved (parallel plate, radial symmetry).
- Need numerical methods to solve the field for MPGD detectors: Finite Element Method (FEM) solvers, such as ANSYS or COMSOL.
- Electron/ion transport and avalanche formation are not trivial processes.
- Practically the only simulation tool that exists today is GARFIELD++ (old GARFIELD was written in Fortran and not actively maintained anymore).
- Microscopic (Monte Carlo) and analytic solvers.
- GARFIELD uses MAGBOLTZ to calculate electron transport in gas.
- HEED to produce primary electrons (Can be imported from another simulation tool, such as Geant4.
- Need a field map by a FEM solver.
- Still better solutions needed for complicated dynamic effects, such as charge-up, space charge generation etc.