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Silicon telescope
to be read through dual port ram snooping
(old H2 daq system)

Muon chamber
64 TDC channels
1 PU for BTI output recording

beam

Rates ≈  800 trig/spill - 400 hz
8 ktrigs/spill - 4 khz

                    (no silicon)

Typ. sizes ≈  50 kB/spill
80 kB/spill (no silicon)

H2 july ‘99 testbeam setup

Provide real data to analysis through ORCA
Verify needed resources to customize the
generic DAQ column

Validate building protocols
Verify portability and code reusability

Goals:

Setup:
a “parallel” daq system based on daq column
components
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Daq software architecture

RUM RUO
ToolBOX

RU
Manager

RUIDMA VME
DMA PCI
VME
MXI
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- DLPI
- TCP/IP
- UDP/IP
- SENS: 
    - FastEth
    - GigaEth
- MAZE (Myrinet)
- Flat File

Run Control Backbone: (Java Corba)
Trigger Lv-1:
- PCI
- VME
- Ethernet

Lv-2:
Ethernet

Spy data flow

generic daq loop
 for (;;)
{
        try {
     // Waiting trigger

*ruiTrgStream >> setl(sizeof(trigger)) >> (char*)&TBtrg;
//Read Event

*ruiInputStream >> setl(1) >> (char *)evt_data;
//Write to RUM memory

 rumStream_->open(&event,vxios::write);
*rumStream_ << setl(evt_data[0]*sizeof(int)) << (char *)evt_data;

  rumStream_->close();
}

 }

RU measured rates:
  RUI    ≈ 100 khz

  RUI+RUO
≈ 9 khz (256 B/ev)
≈ 6 khz (4 kB/ev)
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Daq software architecture

FUM FUO

ToolBOX

FU
Manager
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Run Control Backbone: (Java Corba)

Spy data flow

FU measured rates:
RU+CFU

≈ 1 khz (256 B/ev)
≈ 700 hz (4 kB/ev) or OODB
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System Components: hardware setup
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System Components : EVM

FU EVM FU

Alloc / Clear

Confirm

Readout

Send

Cache

- No software component.
- Hardcoded logic for the synchronization

(BUSY’s and VETO’s).
- Sequential super event numbering drives

requests.

FU FU

Readout

Send i+1 / Clear

Cache

Send i / Clear

Cache

LVL 1

Full Building Protocol TestBeam Simplified Protocol

Due to silicon data snooping,
data were collected as super
events (1 per spill): LVL-1
triggers were appended up to
the end of the spill

Effective super event rate 1/14.2 s

Spill On

Open Ev

Close Ev
Spill Off
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System Components : Run Control

RU Manager FU Manager

Java Corba backbone

GUI
Experiment Manager

logger

command
status
config

Working as a spy daq, the RCS actually didn’t provide any
front end configuration, nor run setup logging.
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System evaluation

Performances
Total throughput wasn’t a big issue ( 1-100 kB/s) due to spill cycle.
Level-1 trigger handling within requirements (> 500 hz)

Required Manpower this setup to a new front end
customization 3 man months ≈ 10 days
integration 2 man months -
final setup debugging 3 man weeks probably same

Major inconveniences

Bugs: found quite a few during integration and running, both on inherited
code and on custom code. Systematic deadlock on RUI/RUO sync hang RU.
Memory leaks on the FU side. Software exceptions handling problems
(compiler?).

Uptime
60% of the two weeks run (mostly on single RU configuration). Half of the
runs only on flat file storage.
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System evaluation

Major inconveniences (continued)

 Inadeguate RU model: the RU classes had to be modified to allow use of
specialized RUI’s, with different trigger handling.

Online Event Display: the lack of running tools to spy OODB data flow
resulted in DB being filled without any check. Unacceptable condition.
Although raw data spies had been added, at least a rough event display
(whether OO or not) to qualify data will be necessary during future runs.

Database Population: following the previous lack, problems with raw data
encoding to DB objects gave much more troubles than they should have.

Run Control: Run Control System unable to handle asynchronous error
conditions. GUI had several misbehaviour (and was too slow). Switched to
alphanumeric user interface. ORB interoperability problems forced the
move of RU manager away from the RU cpu.
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System evaluation

Future steps

RU/BU API: a major revision of the whole toolbox went through, resulting
on a new software model, based on remote method invocation, aimed to a
higher flexibility. Testing is now being done, and possibly a new integration
will proceed on a next small daq system.

Run Control: the tracked bugs have been worked around. While the
architecture isn’t going to be modified, a new release of the RCS provides
a cleaner interface between components.

Event Display: while no display can be generic enough to cover every setup,
some basic general purpose tool (e.g. histo server) could be embedded on
the builder.
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Future steps (continued)

Database support: a local, lightweight database will be integrated on the
system to address all the issues related to system partitionning, run
configuration and bookeeping. Among various products we are evaluating
minisql (public domain), mysql (linux 6.1 distr.), Jdatastore (Borland), last
two being JDBC compliant.

System evaluation
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Multi front-end integration

The lack of pipeline in present testbeamfront-end involves a revision of the EVM-RU-BU
protocol to insure proper trigger synchronization in a multi RU’s setup (e.g.
integration of silicon data required spill sync).

HW oriented sync: 

trig 

busy 1

busy 2

Global Busy

Trig count ++

trig 

EVM trig ID broadcast: 
Acknowledged Readout Invocation:

EVM Busy
Read
out 1

Read
out 2

Ack 1 Ack 2

A RU can loose trigs due to
time alignment problems.

Every Readout (or broadcast) needs
to be acknowledged.

Deadtime sums up.
Band limited when trig rate increases

due to n-ack’s
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Multi front-end integration

trig 

EVM trig ID broadcast: 

Timed Out Busy:

EVM Busy

Readout

Only unaccepted trigs are
signaled to EVM. If none
after timeout busy is
cleared.

Trig Rate limited.

Not Ready 1

Timeout

Independent RU’s:

trig 1 

EVM Busy

Busy 1

trig 

Readout Readout

trig 2 

Busy 2

Every trig ID is broadcasted.
RU’s can accept or reject trig.
(empty trig entries might be pushed

on DPM for proper merging).
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First data analysis through OODB
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Cell Occupancy Drift Time Boxes

by Annalina Vitelli andClaudio Grandi

Chamber Resolution 200 µm
Efficiency 90%


